Cargando…
Training a Feedforward Neural Network Using Hybrid Gravitational Search Algorithm with Dynamic Multiswarm Particle Swarm Optimization
One of the most well-known methods for solving real-world and complex optimization problems is the gravitational search algorithm (GSA). The gravitational search technique suffers from a sluggish convergence rate and weak local search capabilities while solving complicated optimization problems. A u...
Autores principales: | Nagra, Arfan Ali, Alyas, Tahir, Hamid, Muhammad, Tabassum, Nadia, Ahmad, Aqeel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192231/ https://www.ncbi.nlm.nih.gov/pubmed/35707376 http://dx.doi.org/10.1155/2022/2636515 |
Ejemplares similares
-
Multiswarm Particle Swarm Optimization with Transfer of the Best Particle
por: Wei, Xiao-peng, et al.
Publicado: (2015) -
Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems
por: Yu, Xiang, et al.
Publicado: (2017) -
Training of feedforward neural networks for data classification using hybrid particle swarm optimization, Mantegna Lévy flight and neighborhood search
por: Tarkhaneh, Omid, et al.
Publicado: (2019) -
Simple gravitational particle swarm algorithm for multimodal optimization problems
por: Yamanaka, Yoshikazu, et al.
Publicado: (2021) -
Particle Swarm Contour Search Algorithm
por: Weikert, Dominik, et al.
Publicado: (2020)