Cargando…
Optimising the classification of feature-based attention in frequency-tagged electroencephalography data
Brain-computer interfaces (BCIs) are a rapidly expanding field of study and require accurate and reliable real-time decoding of patterns of neural activity. These protocols often exploit selective attention, a neural mechanism that prioritises the sensory processing of task-relevant stimulus feature...
Autores principales: | Renton, Angela I., Painter, David R., Mattingley, Jason B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192640/ https://www.ncbi.nlm.nih.gov/pubmed/35697741 http://dx.doi.org/10.1038/s41597-022-01398-z |
Ejemplares similares
-
Pupillometry and electroencephalography in the digit span task
por: Pavlov, Yuri G., et al.
Publicado: (2022) -
Dataset of Speech Production in intracranial Electroencephalography
por: Verwoert, Maxime, et al.
Publicado: (2022) -
Optimising non-invasive brain-computer interface systems for free communication between naïve human participants
por: Renton, Angela I., et al.
Publicado: (2019) -
An Electroencephalography-based Database for studying the Effects of Acoustic Therapies for Tinnitus Treatment
por: Cuevas-Romero, Alma Rosa, et al.
Publicado: (2022) -
Bimodal electroencephalography-functional magnetic resonance imaging dataset for inner-speech recognition
por: Simistira Liwicki, Foteini, et al.
Publicado: (2023)