Cargando…

Dietary supplements do not improve bone morphology or mechanical properties in young female C57BL/6 mice

Bone is a hierarchical material formed by an organic extracellular matrix and mineral where each component and their physical relationship with each other contribute to fracture resistance. Bone quality can be affected by nutrition, and dietary supplements that are marketed to improve overall health...

Descripción completa

Detalles Bibliográficos
Autores principales: Creecy, Amy, Smith, Collier, Wallace, Joseph M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192719/
https://www.ncbi.nlm.nih.gov/pubmed/35697787
http://dx.doi.org/10.1038/s41598-022-14068-2
Descripción
Sumario:Bone is a hierarchical material formed by an organic extracellular matrix and mineral where each component and their physical relationship with each other contribute to fracture resistance. Bone quality can be affected by nutrition, and dietary supplements that are marketed to improve overall health may improve the fracture resistance of bone. To test this, 11 week old female C57BL/6 mice were fed either collagen, chondroitin sulfate, glucosamine sulfate, or fish oil 5 times a week for 8 weeks. Femurs, tibiae, and vertebrae were scanned with micro-computed tomography and then mechanically tested. Glucosamine and fish oil lowered elastic modulus, but did not alter the overall strength of the femur. There were no differences in bone mechanics of the tibiae or vertebrae. Overall, the data suggest that dietary supplements did little to improve bone quality in young, healthy mice. These supplements may be more effective in diseased or aged mice.