Cargando…
Machine learning molecular dynamics simulations toward exploration of high-temperature properties of nuclear fuel materials: case study of thorium dioxide
Predicting materials properties of nuclear fuel compounds is a challenging task in materials science. Their thermodynamical behaviors around and above the operational temperature are essential for the design of nuclear reactors. However, they are not easy to measure, because the target temperature r...
Autores principales: | Kobayashi, Keita, Okumura, Masahiko, Nakamura, Hiroki, Itakura, Mitsuhiro, Machida, Masahiko, Cooper, Michael W. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192752/ https://www.ncbi.nlm.nih.gov/pubmed/35697713 http://dx.doi.org/10.1038/s41598-022-13869-9 |
Ejemplares similares
-
Machine learning molecular dynamics reveals the structural origin of the first sharp diffraction peak in high-density silica glasses
por: Kobayashi, Keita, et al.
Publicado: (2023) -
Nuclear Data for the Thorium fuel Cycle and Transmutation
por: Gunsing, F.
Publicado: (2013) -
Global and Turkish perspectives of Thorium fuel for nuclear energy
por: Kaya, Muammer
Publicado: (2013) -
Thorium Fuel cycle
por: Kadi, Yacine
Publicado: (2013) -
Thorium Fuel Cycle activities in IAEA
por: Basak, Uddharan
Publicado: (2013)