Cargando…
Overexpression of lncRNA-Gm2044 in spermatogonia impairs spermatogenesis in partial seminiferous tubules
Long noncoding RNAs (lncRNAs) have been demonstrated to regulate reproduction in mammals. Our previous study revealed that the expression level of lncRNA-Gm2044 was obviously elevated in nonobstructive azoospermia with spermatogonial arrest. Here, a transgenic mouse model of lncRNA-Gm2044 in spermat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192819/ https://www.ncbi.nlm.nih.gov/pubmed/35691049 http://dx.doi.org/10.1016/j.psj.2022.101930 |
Sumario: | Long noncoding RNAs (lncRNAs) have been demonstrated to regulate reproduction in mammals. Our previous study revealed that the expression level of lncRNA-Gm2044 was obviously elevated in nonobstructive azoospermia with spermatogonial arrest. Here, a transgenic mouse model of lncRNA-Gm2044 in spermatogonia using the Stra8 promoter was constructed to explore the roles of upregulated lncRNA-Gm2044 in male fertility. Testicular morphology and fertility weren't affected in transgenic mice expressing lncRNA-Gm2044. However, overexpression of lncRNA-Gm2044 in spermatogonia partially impaired spermatogenesis in the transgenic mice. Then, transcriptome sequencing was executed to find the potential signaling pathway repressing spermatogenesis in germ cells of lncRNA-Gm2044 transgenic mice. Through quantitative analysis of differentially expressed genes, 442 upregulated mRNAs and 147 downregulated mRNAs were displayed in male germ cells of Gm2044-transgenic mice (Gm2044-Tg) compared with non-transgenic mice (Non-Tg). Using gene ontology (GO) analysis, differentially expressed genes were shown to play vital roles in RNA_metabolic_process, Central_element, Enzyme_binding, and Intracellular_bridge. Using Kyoto encyclopedia of genes and genomes (KEGG) analysis, differentially expressed genes were shown to participate in RNA_transport, Cell_cycle, Renin-angiotensin_system, and Chemokine_signaling_pathway. Gene Set Enrichment Analysis (GSEA) revealed that Acrosome_assembly and Sperm_plasma_membrane were involved in the overexpression of lncRNA-Gm2044 blocking spermatogenesis. Furthermore, some of the most differentially expressed mRNAs were verified by RT-qPCR. In addition, we determined that the lncRNA-Gm2044 has no ability to translate into peptides by the bioinformatics method and molecular experiment. Thus, lncRNA-Gm2044 is a novel molecular target for the diagnosis and treatment of male infertility. |
---|