Cargando…

Ultra high speed SPECT bone imaging enabled by a deep learning enhancement method: a proof of concept

BACKGROUND: To generate high-quality bone scan SPECT images from only 1/7 scan time SPECT images using deep learning-based enhancement method. MATERIALS AND METHODS: Normal-dose (925–1110 MBq) clinical technetium 99 m-methyl diphosphonate (99mTc-MDP) SPECT/CT images and corresponding SPECT/CT images...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Boyang, Qi, Na, Meng, Qingyuan, Wang, Jiachen, Peng, Siyue, Qi, Chengxiao, Gong, Nan-Jie, Zhao, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192886/
https://www.ncbi.nlm.nih.gov/pubmed/35698006
http://dx.doi.org/10.1186/s40658-022-00472-0
Descripción
Sumario:BACKGROUND: To generate high-quality bone scan SPECT images from only 1/7 scan time SPECT images using deep learning-based enhancement method. MATERIALS AND METHODS: Normal-dose (925–1110 MBq) clinical technetium 99 m-methyl diphosphonate (99mTc-MDP) SPECT/CT images and corresponding SPECT/CT images with 1/7 scan time from 20 adult patients with bone disease and a phantom were collected to develop a lesion-attention weighted U(2)-Net (Qin et al. in Pattern Recognit 106:107404, 2020), which produces high-quality SPECT images from fast SPECT/CT images. The quality of synthesized SPECT images from different deep learning models was compared using PSNR and SSIM. Clinic evaluation on 5-point Likert scale (5 = excellent) was performed by two experienced nuclear physicians. Average score and Wilcoxon test were constructed to assess the image quality of 1/7 SPECT, DL-enhanced SPECT and the standard SPECT. SUVmax, SUVmean, SSIM and PSNR from each detectable sphere filled with imaging agent were measured and compared for different images. RESULTS: U(2)-Net-based model reached the best PSNR (40.8) and SSIM (0.788) performance compared with other advanced deep learning methods. The clinic evaluation showed the quality of the synthesized SPECT images is much higher than that of fast SPECT images (P < 0.05). Compared to the standard SPECT images, enhanced images exhibited the same general image quality (P > 0.999), similar detail of 99mTc-MDP (P = 0.125) and the same diagnostic confidence (P = 0.1875). 4, 5 and 6 spheres could be distinguished on 1/7 SPECT, DL-enhanced SPECT and the standard SPECT, respectively. The DL-enhanced phantom image outperformed 1/7 SPECT in SUVmax, SUVmean, SSIM and PSNR in quantitative assessment. CONCLUSIONS: Our proposed method can yield significant image quality improvement in the noise level, details of anatomical structure and SUV accuracy, which enabled applications of ultra fast SPECT bone imaging in real clinic settings.