Cargando…
Application of interpretable machine learning for early prediction of prognosis in acute kidney injury
BACKGROUND: This study aimed to develop an algorithm using the explainable artificial intelligence (XAI) approaches for the early prediction of mortality in intensive care unit (ICU) patients with acute kidney injury (AKI). METHODS: This study gathered clinical data with AKI patients from the Medica...
Autores principales: | Hu, Chang, Tan, Qing, Zhang, Qinran, Li, Yiming, Wang, Fengyun, Zou, Xiufen, Peng, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9193404/ https://www.ncbi.nlm.nih.gov/pubmed/35765651 http://dx.doi.org/10.1016/j.csbj.2022.06.003 |
Ejemplares similares
-
Application of Machine Learning for Clinical Subphenotype Identification in Sepsis
por: Hu, Chang, et al.
Publicado: (2022) -
Interpretable machine learning models for early prediction of acute kidney injury after cardiac surgery
por: Jiang, Jicheng, et al.
Publicado: (2023) -
scAB detects multiresolution cell states with clinical significance by integrating single-cell genomics and bulk sequencing data
por: Zhang, Qinran, et al.
Publicado: (2022) -
Data-driven distillation and precision prognosis in traumatic brain injury with interpretable machine learning
por: Tritt, Andrew, et al.
Publicado: (2023) -
Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study
por: Hu, Chang, et al.
Publicado: (2022)