Cargando…
Predicting Adherence to Canada's Food Guide Recommendations on Healthy Food Choices Using Machine Learning Algorithms
OBJECTIVES: Machine learning (ML) algorithms can potentially improve predictive performances compared to traditional statistical models. The aim of this study was to predict adherence to the 2019 Canada's Food Guide (CFG) recommendations on healthy food choices using ML and a large array of var...
Autores principales: | Côté, Mélina, Brassard, Didier, Robitaille, Julie, Vohl, Marie-Claude, Lemieux, Simone, Lamarche, Benoît |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9193560/ http://dx.doi.org/10.1093/cdn/nzac051.015 |
Ejemplares similares
-
Adhering to Canada’s Food Guide Recommendations on Healthy Food Choices Increases the Daily Diet Cost: Insights from the PREDISE Study
por: Rochefort, Gabrielle, et al.
Publicado: (2022) -
Are Machine Learning Algorithms More Accurate in Predicting Vegetable and Fruit Consumption Than Traditional Statistical Models? An Exploratory Analysis
por: Côté, Mélina, et al.
Publicado: (2022) -
Consumption of low nutritive value foods and cardiometabolic risk factors among French-speaking adults from Quebec, Canada: the PREDISE study
por: Brassard, Didier, et al.
Publicado: (2019) -
Differences in Population-Based Dietary Intake Estimates Obtained From an Interviewer-Administered and a Self-Administered Web-Based 24-h Recall
por: Brassard, Didier, et al.
Publicado: (2020) -
Greater adherence to the 2019 Canada's Food Guide recommendations on healthy food choices reduces the risk of cardiovascular disease in adults: a prospective analysis of UK Biobank data
por: Brassard, Didier, et al.
Publicado: (2022)