Cargando…

Modelling the Effect of Geometry and Loading on Mechanical Response of SARS-CoV-2

In recent times, coronavirus (SARS-CoV-2) becomes a pandemic disease across the globe. This virus affects the severe acute respiratory system that causes a type of pneumonia, which results in an outbreak in Wuhan, China, and then in whole global countries. The virus possesses a complex structure and...

Descripción completa

Detalles Bibliográficos
Autores principales: Gautam, Diplesh, Ahmed, Nizam, Rao, Venkatesh KP
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194348/
https://www.ncbi.nlm.nih.gov/pubmed/35729972
http://dx.doi.org/10.1007/s12668-022-00993-z
Descripción
Sumario:In recent times, coronavirus (SARS-CoV-2) becomes a pandemic disease across the globe. This virus affects the severe acute respiratory system that causes a type of pneumonia, which results in an outbreak in Wuhan, China, and then in whole global countries. The virus possesses a complex structure and varied in composition along with its geometrical shape and size. Contributions of the lipid and protein components of a virus to the influenza viral envelope’s mechanical properties are still unknown. In this work, the virus is modeled like the SARS-CoV-2 and surrounded with spikes made up of S glycoproteins, and numerical analysis was made to predict its mechanical behavior while resting on the substrate. The static and viscoelastic response of the virus was carried out in a finite element (FE) commercial software Ansys. The impact of changing viral envelope thickness on SARS-CoV-2 and bald virus stiffness was investigated. The viscoelastic analysis shows the increase in the deformation and stress with an increase in the pressure. The static analysis predicts the lower stiffness for SARS-CoV-2 compared to bald virion and increases with the increase in the envelop thickness. This study is useful for analyzing the effect of geometry and mechanical properties on the mechanical response of SARS-CoV-2.