Cargando…
A Systematic Approach for Explaining Time and Frequency Features Extracted by Convolutional Neural Networks From Raw Electroencephalography Data
In recent years, the use of convolutional neural networks (CNNs) for raw resting-state electroencephalography (EEG) analysis has grown increasingly common. However, relative to earlier machine learning and deep learning methods with manually extracted features, CNNs for raw EEG analysis present uniq...
Autores principales: | Ellis, Charles A., Miller, Robyn L., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194525/ https://www.ncbi.nlm.nih.gov/pubmed/35712676 http://dx.doi.org/10.3389/fninf.2022.872035 |
Ejemplares similares
-
Recognition of Electroencephalography-Related Features of Neuronal Network Organization in Patients With Schizophrenia Using the Generalized Choquet Integrals
por: Plechawska-Wójcik, Małgorzata, et al.
Publicado: (2021) -
Dissociable Neural Representations of Adversarially Perturbed Images in Convolutional Neural Networks and the Human Brain
por: Zhang, Chi, et al.
Publicado: (2021) -
The Clinical Assessment and Remote Administration Tablet
por: Turner, Jessica A., et al.
Publicado: (2011) -
Brain-Computer Interface using neural network and temporal-spectral features
por: Wang, Gan, et al.
Publicado: (2022) -
Time-Frequency Representations of Brain Oscillations: Which One Is Better?
por: Bârzan, Harald, et al.
Publicado: (2022)