Cargando…
Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila
Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear prote...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194793/ https://www.ncbi.nlm.nih.gov/pubmed/35319107 http://dx.doi.org/10.15252/embj.2021109049 |
_version_ | 1784726798255259648 |
---|---|
author | Emtenani, Shamsi Martin, Elliot T Gyoergy, Attila Bicher, Julia Genger, Jakob‐Wendelin Köcher, Thomas Akhmanova, Maria Guarda, Mariana Roblek, Marko Bergthaler, Andreas Hurd, Thomas R Rangan, Prashanth Siekhaus, Daria E |
author_facet | Emtenani, Shamsi Martin, Elliot T Gyoergy, Attila Bicher, Julia Genger, Jakob‐Wendelin Köcher, Thomas Akhmanova, Maria Guarda, Mariana Roblek, Marko Bergthaler, Andreas Hurd, Thomas R Rangan, Prashanth Siekhaus, Daria E |
author_sort | Emtenani, Shamsi |
collection | PubMed |
description | Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism. First, nuclear Atossa increases mRNA levels of Porthos, a DEAD‐box protein, and of two metabolic enzymes, lysine‐α‐ketoglutarate reductase (LKR/SDH) and NADPH glyoxylate reductase (GR/HPR), thus enhancing mitochondrial bioenergetics. Then Porthos supports ribosome assembly and thereby raises the translational efficiency of a subset of mRNAs, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Mitochondrial respiration measurements, metabolomics, and live imaging indicate that Atossa and Porthos power up OxPhos and energy production to promote the forging of a path into tissues by leading macrophages. Since many crucial physiological responses require increases in mitochondrial energy output, this previously undescribed genetic program may modulate a wide range of cellular behaviors. |
format | Online Article Text |
id | pubmed-9194793 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91947932022-06-27 Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila Emtenani, Shamsi Martin, Elliot T Gyoergy, Attila Bicher, Julia Genger, Jakob‐Wendelin Köcher, Thomas Akhmanova, Maria Guarda, Mariana Roblek, Marko Bergthaler, Andreas Hurd, Thomas R Rangan, Prashanth Siekhaus, Daria E EMBO J Articles Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism. First, nuclear Atossa increases mRNA levels of Porthos, a DEAD‐box protein, and of two metabolic enzymes, lysine‐α‐ketoglutarate reductase (LKR/SDH) and NADPH glyoxylate reductase (GR/HPR), thus enhancing mitochondrial bioenergetics. Then Porthos supports ribosome assembly and thereby raises the translational efficiency of a subset of mRNAs, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Mitochondrial respiration measurements, metabolomics, and live imaging indicate that Atossa and Porthos power up OxPhos and energy production to promote the forging of a path into tissues by leading macrophages. Since many crucial physiological responses require increases in mitochondrial energy output, this previously undescribed genetic program may modulate a wide range of cellular behaviors. John Wiley and Sons Inc. 2022-03-23 /pmc/articles/PMC9194793/ /pubmed/35319107 http://dx.doi.org/10.15252/embj.2021109049 Text en © 2022 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Emtenani, Shamsi Martin, Elliot T Gyoergy, Attila Bicher, Julia Genger, Jakob‐Wendelin Köcher, Thomas Akhmanova, Maria Guarda, Mariana Roblek, Marko Bergthaler, Andreas Hurd, Thomas R Rangan, Prashanth Siekhaus, Daria E Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila |
title | Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila |
title_full | Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila |
title_fullStr | Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila |
title_full_unstemmed | Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila |
title_short | Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila |
title_sort | macrophage mitochondrial bioenergetics and tissue invasion are boosted by an atossa‐porthos axis in drosophila |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194793/ https://www.ncbi.nlm.nih.gov/pubmed/35319107 http://dx.doi.org/10.15252/embj.2021109049 |
work_keys_str_mv | AT emtenanishamsi macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT martinelliott macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT gyoergyattila macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT bicherjulia macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT gengerjakobwendelin macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT kocherthomas macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT akhmanovamaria macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT guardamariana macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT roblekmarko macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT bergthalerandreas macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT hurdthomasr macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT ranganprashanth macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila AT siekhausdariae macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila |