Cargando…

Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila

Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear prote...

Descripción completa

Detalles Bibliográficos
Autores principales: Emtenani, Shamsi, Martin, Elliot T, Gyoergy, Attila, Bicher, Julia, Genger, Jakob‐Wendelin, Köcher, Thomas, Akhmanova, Maria, Guarda, Mariana, Roblek, Marko, Bergthaler, Andreas, Hurd, Thomas R, Rangan, Prashanth, Siekhaus, Daria E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194793/
https://www.ncbi.nlm.nih.gov/pubmed/35319107
http://dx.doi.org/10.15252/embj.2021109049
_version_ 1784726798255259648
author Emtenani, Shamsi
Martin, Elliot T
Gyoergy, Attila
Bicher, Julia
Genger, Jakob‐Wendelin
Köcher, Thomas
Akhmanova, Maria
Guarda, Mariana
Roblek, Marko
Bergthaler, Andreas
Hurd, Thomas R
Rangan, Prashanth
Siekhaus, Daria E
author_facet Emtenani, Shamsi
Martin, Elliot T
Gyoergy, Attila
Bicher, Julia
Genger, Jakob‐Wendelin
Köcher, Thomas
Akhmanova, Maria
Guarda, Mariana
Roblek, Marko
Bergthaler, Andreas
Hurd, Thomas R
Rangan, Prashanth
Siekhaus, Daria E
author_sort Emtenani, Shamsi
collection PubMed
description Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism. First, nuclear Atossa increases mRNA levels of Porthos, a DEAD‐box protein, and of two metabolic enzymes, lysine‐α‐ketoglutarate reductase (LKR/SDH) and NADPH glyoxylate reductase (GR/HPR), thus enhancing mitochondrial bioenergetics. Then Porthos supports ribosome assembly and thereby raises the translational efficiency of a subset of mRNAs, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Mitochondrial respiration measurements, metabolomics, and live imaging indicate that Atossa and Porthos power up OxPhos and energy production to promote the forging of a path into tissues by leading macrophages. Since many crucial physiological responses require increases in mitochondrial energy output, this previously undescribed genetic program may modulate a wide range of cellular behaviors.
format Online
Article
Text
id pubmed-9194793
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-91947932022-06-27 Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila Emtenani, Shamsi Martin, Elliot T Gyoergy, Attila Bicher, Julia Genger, Jakob‐Wendelin Köcher, Thomas Akhmanova, Maria Guarda, Mariana Roblek, Marko Bergthaler, Andreas Hurd, Thomas R Rangan, Prashanth Siekhaus, Daria E EMBO J Articles Cellular metabolism must adapt to changing demands to enable homeostasis. During immune responses or cancer metastasis, cells leading migration into challenging environments require an energy boost, but what controls this capacity is unclear. Here, we study a previously uncharacterized nuclear protein, Atossa (encoded by CG9005), which supports macrophage invasion into the germband of Drosophila by controlling cellular metabolism. First, nuclear Atossa increases mRNA levels of Porthos, a DEAD‐box protein, and of two metabolic enzymes, lysine‐α‐ketoglutarate reductase (LKR/SDH) and NADPH glyoxylate reductase (GR/HPR), thus enhancing mitochondrial bioenergetics. Then Porthos supports ribosome assembly and thereby raises the translational efficiency of a subset of mRNAs, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Mitochondrial respiration measurements, metabolomics, and live imaging indicate that Atossa and Porthos power up OxPhos and energy production to promote the forging of a path into tissues by leading macrophages. Since many crucial physiological responses require increases in mitochondrial energy output, this previously undescribed genetic program may modulate a wide range of cellular behaviors. John Wiley and Sons Inc. 2022-03-23 /pmc/articles/PMC9194793/ /pubmed/35319107 http://dx.doi.org/10.15252/embj.2021109049 Text en © 2022 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Emtenani, Shamsi
Martin, Elliot T
Gyoergy, Attila
Bicher, Julia
Genger, Jakob‐Wendelin
Köcher, Thomas
Akhmanova, Maria
Guarda, Mariana
Roblek, Marko
Bergthaler, Andreas
Hurd, Thomas R
Rangan, Prashanth
Siekhaus, Daria E
Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila
title Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila
title_full Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila
title_fullStr Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila
title_full_unstemmed Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila
title_short Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossa‐Porthos axis in Drosophila
title_sort macrophage mitochondrial bioenergetics and tissue invasion are boosted by an atossa‐porthos axis in drosophila
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194793/
https://www.ncbi.nlm.nih.gov/pubmed/35319107
http://dx.doi.org/10.15252/embj.2021109049
work_keys_str_mv AT emtenanishamsi macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT martinelliott macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT gyoergyattila macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT bicherjulia macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT gengerjakobwendelin macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT kocherthomas macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT akhmanovamaria macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT guardamariana macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT roblekmarko macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT bergthalerandreas macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT hurdthomasr macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT ranganprashanth macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila
AT siekhausdariae macrophagemitochondrialbioenergeticsandtissueinvasionareboostedbyanatossaporthosaxisindrosophila