Cargando…

The role of A-kinase interacting protein 1 in regulating progression and stemness as well as indicating the prognosis in glioblastoma

BACKGROUND: A-kinase interacting protein 1 (AKIP1) is recently implicated in the pathogenesis of several solid tumors, while its role in glioblastoma multiforme (GBM) is largely unknown. Therefore, the current study aimed to investigate the effect of AKIP1 on GBM cell malignant behaviors, stemness,...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Jingxia, Peng, Shirong, Yan, Haifeng, Ni, Ming, Hou, Xiaodan, Ma, Peizhi, Li, Yuanlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194846/
https://www.ncbi.nlm.nih.gov/pubmed/35691247
http://dx.doi.org/10.1016/j.tranon.2022.101463
Descripción
Sumario:BACKGROUND: A-kinase interacting protein 1 (AKIP1) is recently implicated in the pathogenesis of several solid tumors, while its role in glioblastoma multiforme (GBM) is largely unknown. Therefore, the current study aimed to investigate the effect of AKIP1 on GBM cell malignant behaviors, stemness, and its underlying molecular mechanisms. METHODS: U-87 MG and A172 cells were transfected with control or AKIP1 overexpression plasmid; control or AKIP1 siRNA plasmid. Then cell proliferation, apoptosis, invasion, CD133(+) cell proportion, and sphere formation assays were performed. Furthermore, RNA-Seq was performed in U-87 MG cells. Besides, AKIP1 expression was detected in 25 GBM and 25 low-grade glioma (LGG) tumor samples. RESULTS: AKIP1 was increased in several GBM cell lines compared to the control cell line. After transfections, it was found that AKIP1 overexpression increased cell invasion, CD133(+) cell proportion, and sphere formation ability while less affecting cell proliferation or cell apoptosis in U-87 MG and A172 cells. Moreover, AKIP1 siRNA achieved the opposite effect in these cells, except that it inhibited cell proliferation but induced cell apoptosis to some extent. Subsequent RNA-Seq assay showed several critical carcinogenetic pathways, such as PI3K/AKT, Notch, EGFR tyrosine kinase inhibitor resistance, Ras, ErbB, mTOR pathways, etc. were potentially related to the function of AKIP1 in U-87 MG cells. Clinically, AKIP1 expression was higher in GBM tissues than in LGG tissues, which was also correlated with the poor prognosis of GBM to some degree. CONCLUSIONS: AKIP1 regulates the malignant behaviors and stemness of GBM via regulating multiple carcinogenetic pathways.