Cargando…
Sufficient principal component regression for pattern discovery in transcriptomic data
MOTIVATION: Methods for the global measurement of transcript abundance such as microarrays and RNA-Seq generate datasets in which the number of measured features far exceeds the number of observations. Extracting biologically meaningful and experimentally tractable insights from such data therefore...
Autores principales: | Ding, Lei, Zentner, Gabriel E, McDonald, Daniel J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194947/ https://www.ncbi.nlm.nih.gov/pubmed/35722206 http://dx.doi.org/10.1093/bioadv/vbac033 |
Ejemplares similares
-
Principal component regression for crop yield estimation
por: Suryanarayana, T M V, et al.
Publicado: (2016) -
Principal-component-based multivariate regression for genetic association studies of metabolic syndrome components
por: Mei, Hao, et al.
Publicado: (2010) -
A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
por: He, Daojiang, et al.
Publicado: (2014) -
Principal component analysis reveals the 1000 Genomes Project does not sufficiently cover the human genetic diversity in Asia
por: Lu, Dongsheng, et al.
Publicado: (2013) -
Flexible analysis of TSS mapping data and detection of TSS shifts with TSRexploreR
por: Policastro, Robert A, et al.
Publicado: (2021)