Cargando…

A detailed process map for clinical workflow of a new biology‐guided radiotherapy (BgRT) machine

PURPOSE: Biology‐guided radiotherapy (BgRT) is a new external beam radiation therapy modality combining PET‐CT with a linear accelerator that has the potential to track and treat one or more tumors in real‐time. The use of PET and radiopharmaceutical tracers introduces new processes that are differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Hwang, Min‐Sig, Lalonde, Ron, Huq, M. Saiful
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194983/
https://www.ncbi.nlm.nih.gov/pubmed/35536773
http://dx.doi.org/10.1002/acm2.13606
Descripción
Sumario:PURPOSE: Biology‐guided radiotherapy (BgRT) is a new external beam radiation therapy modality combining PET‐CT with a linear accelerator that has the potential to track and treat one or more tumors in real‐time. The use of PET and radiopharmaceutical tracers introduces new processes that are different from the existing treatment processes. In this study, we have developed a process map for the clinical implementation of a prototype BgRT machine. METHODS: A team of 13 members from various radiation therapy disciplines at our institution participated in developing a prospective process map for a prototype BgRT machine. The methodology provided by the AAPM TG 100 report was followed. In particular, the steps unique to the BgRT workflow, using hypofractionated stereotactic body radiation therapy with fluorodeoxyglucose radiolabeled with fluorine‐18 (FDG) to guide beam delivery, were analyzed. RESULTS: The multi‐disciplinary team in the department of radiation oncology at our institution developed a prospective process map for the clinical BgRT workflow. By focusing on the appropriate level of detail, 15 major subprocesses, 133 steps, and 248 substeps were identified and the process map was agreed upon as being useful, implementable, and manageable. Seventy‐four steps from nine subprocesses, 55.6% of the whole process, were analyzed to be the BgRT unique steps. They originate mainly from: (1) acquiring multiple PET images at the BgRT machine with separate patient visits, (2) creating a unique biological treatment volume for BgRT plan (PTV(BgRT)), and (3) BgRT plan optimization and treatment delivery using PET images. CONCLUSION: Using BgRT to irradiate multiple metastases in the same session will impact clinical workflow, thus a graphical process map depicting the new clinical workflow with an appropriate level of detail is critical for efficient, safe, and high‐quality care. The prospective process map will guide the successful setup and use of the new BgRT system.