Cargando…
Organ‐at‐risk dose prediction using a machine learning algorithm: Clinical validation and treatment planning benefit for lung SBRT
OBJECTIVE: To quantify the clinical performance of a machine learning (ML) algorithm for organ‐at‐risk (OAR) dose prediction for lung stereotactic body radiation therapy (SBRT) and estimate the treatment planning benefit from having upfront access to these dose predictions. METHODS: ML models were t...
Autores principales: | Brodin, N. Patrik, Schulte, Leslie, Velten, Christian, Martin, William, Shen, Sydney, Shen, Jin, Basavatia, Amar, Ohri, Nitin, Garg, Madhur K., Carpenter, Colin, Tomé, Wolfgang A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9195027/ https://www.ncbi.nlm.nih.gov/pubmed/35460150 http://dx.doi.org/10.1002/acm2.13609 |
Ejemplares similares
-
Reducing PTV margins for prostate SBRT with motion compensation and gating techniques
por: Goddard, Lee, et al.
Publicado: (2022) -
The effect of low-dose radiation spillage during stereotactic radiosurgery for brain metastases on the development of de novo metastases
por: Paul, Shiby, et al.
Publicado: (2021) -
Validation of accuracy deformable image registration contour propagation using a benchmark virtual HN phantom dataset
por: Boyd, Robert, et al.
Publicado: (2021) -
Using Statistical Measures and Density Maps Generated From Chest Computed Tomography Scans to Identify and Monitor COVID-19 Cases in Radiation Oncology Rapidly
por: Tomé, Marie-Hélène, et al.
Publicado: (2021) -
The effect of integrating knowledge‐based planning with multicriteria optimization in treatment planning for prostate SBRT
por: Jayarathna, Sandun, et al.
Publicado: (2023)