Cargando…
CARE 2.0: reducing false-positive sequencing error corrections using machine learning
BACKGROUND: Next-generation sequencing pipelines often perform error correction as a preprocessing step to obtain cleaned input data. State-of-the-art error correction programs are able to reliably detect and correct the majority of sequencing errors. However, they also introduce new errors by makin...
Autores principales: | Kallenborn, Felix, Cascitti, Julian, Schmidt, Bertil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9195321/ https://www.ncbi.nlm.nih.gov/pubmed/35698033 http://dx.doi.org/10.1186/s12859-022-04754-3 |
Ejemplares similares
-
DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI
por: Liu, Yongchao, et al.
Publicado: (2011) -
Predicting residue contacts using pragmatic correlated mutations method: reducing the false positives
por: Kundrotas, Petras J, et al.
Publicado: (2006) -
Quake: quality-aware detection and correction of sequencing errors
por: Kelley, David R, et al.
Publicado: (2010) -
miRge 2.0 for comprehensive analysis of microRNA sequencing data
por: Lu, Yin, et al.
Publicado: (2018) -
Lighter: fast and memory-efficient sequencing error correction without counting
por: Song, Li, et al.
Publicado: (2014)