Cargando…
Determination of optimal prevention strategy for COVID-19 based on multi-agent simulation
This study proposes a direction for the utilization of multi-agent simulation (MAS) to consider an optimal prevention strategy for the spread of the coronavirus disease of 2019 (COVID-19) through a pandemic modeling example in Japan. MAS can flexibly express macroscopic phenomena formed through the...
Autores principales: | Fujita, Satoki, Kiguchi, Ryo, Yoshida, Yuki, Kitanishi, Yoshitake |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9195403/ https://www.ncbi.nlm.nih.gov/pubmed/35729993 http://dx.doi.org/10.1007/s42081-022-00163-1 |
Ejemplares similares
-
Optimize data-driven multi-agent simulation for COVID-19 transmission
por: Jin, Chao, et al.
Publicado: (2022) -
Patient journey through cases of depression from claims database using machine learning algorithms
por: Kitanishi, Yoshitake, et al.
Publicado: (2021) -
A novel multi-agent simulation based particle swarm optimization algorithm
por: Du, Shuhan, et al.
Publicado: (2022) -
Agent-based simulations for protecting nursing homes with prevention and vaccination strategies
por: Lasser, Jana, et al.
Publicado: (2021) -
Changes in Platelet Counts and Thrombocytopenia Risk in Patients with Chronic Liver Disease with Different Etiologies Using Real-World Japanese Data
por: Yoshida, Manami, et al.
Publicado: (2021)