Cargando…
The effect of temperature on physical activity: an aggregated timeseries analysis of smartphone users in five major Chinese cities
BACKGROUND: Physical activity is an important factor in premature mortality reduction, non-communicable disease prevention, and well-being protection. Climate change will alter temperatures globally, with impacts already found on mortality and morbidity. While uncomfortable temperature is often perc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9195465/ https://www.ncbi.nlm.nih.gov/pubmed/35701809 http://dx.doi.org/10.1186/s12966-022-01285-1 |
Sumario: | BACKGROUND: Physical activity is an important factor in premature mortality reduction, non-communicable disease prevention, and well-being protection. Climate change will alter temperatures globally, with impacts already found on mortality and morbidity. While uncomfortable temperature is often perceived as a barrier to physical activity, the actual impact of temperature on physical activity has been less well studied, particularly in China. This study examined the associations between temperature and objectively measured physical activity among adult populations in five major Chinese cities. METHODS: Aggregated anonymized step count data was obtained between December 2017-2018 for five major Chinese cities: Beijing, Shanghai, Chongqing, Shenzhen, and Hong Kong. The associations of temperature with daily aggregated mean step count were assessed using Generalized Additive Models (GAMs), adjusted for meteorological, air pollution, and time-related variables. RESULTS: Significant decreases in step counts during periods of high temperatures were found for cold or temperate climate cities (Beijing, Shanghai, and Chongqing), with maximum physical activity occurring between 16 and 19.3 °C. High temperatures were associated with decreases of 800-1500 daily steps compared to optimal temperatures. For cities in subtropical climates (Shenzhen and Hong Kong), non-significant declines were found with high temperatures. Overall, females and the elderly demonstrated lower optimal temperatures for physical activity and larger decreases of step count in warmer temperatures. CONCLUSIONS: As minor reductions in physical activity could consequentially affect health, an increased awareness of temperature’s impact on physical activity is necessary. City-wide adaptations and physical activity interventions should seek ways to sustain physical activity levels in the face of shifting temperatures from climate change. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12966-022-01285-1. |
---|