Cargando…

Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study

OBJECTIVE: Large volume radiological text data have been accumulated since the incorporation of electronic health record (EHR) systems in clinical practice. We aimed to determine whether deep natural language processing algorithms could aid radiologists in improving thyroid cancer diagnosis. METHODS...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Qiang, Zhang, Sheng, Li, Jianxin, Pan, Yi, Zhao, Jing, Feng, Yixing, Zhao, Yanhui, Wang, Xiaoqing, Zheng, Zhiming, Yang, Xiangming, Liu, Lixia, Qin, Chunxin, Zhao, Ke, Liu, Xiaonan, Li, Caixia, Zhang, Liuyang, Yang, Chunrui, Zhuo, Na, Zhang, Hong, Liu, Jie, Gao, Jinglei, Di, Xiaoling, Meng, Fanbo, Ji, Wei, Yang, Meng, Xin, Xiaojie, Wei, Xi, Jin, Rui, Zhang, Lun, Wang, Xudong, Song, Fengju, Zheng, Xiangqian, Gao, Ming, Chen, Kexin, Li, Xiangchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Compuscript 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196053/
https://www.ncbi.nlm.nih.gov/pubmed/34491007
http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0509
_version_ 1784727102518460416
author Zhang, Qiang
Zhang, Sheng
Li, Jianxin
Pan, Yi
Zhao, Jing
Feng, Yixing
Zhao, Yanhui
Wang, Xiaoqing
Zheng, Zhiming
Yang, Xiangming
Liu, Lixia
Qin, Chunxin
Zhao, Ke
Liu, Xiaonan
Li, Caixia
Zhang, Liuyang
Yang, Chunrui
Zhuo, Na
Zhang, Hong
Liu, Jie
Gao, Jinglei
Di, Xiaoling
Meng, Fanbo
Ji, Wei
Yang, Meng
Xin, Xiaojie
Wei, Xi
Jin, Rui
Zhang, Lun
Wang, Xudong
Song, Fengju
Zheng, Xiangqian
Gao, Ming
Chen, Kexin
Li, Xiangchun
author_facet Zhang, Qiang
Zhang, Sheng
Li, Jianxin
Pan, Yi
Zhao, Jing
Feng, Yixing
Zhao, Yanhui
Wang, Xiaoqing
Zheng, Zhiming
Yang, Xiangming
Liu, Lixia
Qin, Chunxin
Zhao, Ke
Liu, Xiaonan
Li, Caixia
Zhang, Liuyang
Yang, Chunrui
Zhuo, Na
Zhang, Hong
Liu, Jie
Gao, Jinglei
Di, Xiaoling
Meng, Fanbo
Ji, Wei
Yang, Meng
Xin, Xiaojie
Wei, Xi
Jin, Rui
Zhang, Lun
Wang, Xudong
Song, Fengju
Zheng, Xiangqian
Gao, Ming
Chen, Kexin
Li, Xiangchun
author_sort Zhang, Qiang
collection PubMed
description OBJECTIVE: Large volume radiological text data have been accumulated since the incorporation of electronic health record (EHR) systems in clinical practice. We aimed to determine whether deep natural language processing algorithms could aid radiologists in improving thyroid cancer diagnosis. METHODS: Sonographic EHR data were obtained from the EHR database. Pathological reports were used as the gold standard for diagnosing thyroid cancer. We developed thyroid cancer diagnosis based on natural language processing (THCaDxNLP) to interpret unstructured sonographic text reports for thyroid cancer diagnosis. We used the area under the receiver operating characteristic curve (AUROC) as the primary metric to measure the performance of the THCaDxNLP. We compared the performance of thyroid ultrasound radiologists aided with THCaDxNLP vs. those without THCaDxNLP using 5 independent test sets. RESULTS: We obtained a total number of 788,129 sonographic radiological reports. The number of thyroid sonographic data points was 132,277, 18,400 of which were thyroid cancer patients. Among the 5 test sets, the numbers of patients per set were 439, 186, 82, 343, and 171. THCaDxNLP achieved high performance in identifying thyroid cancer patients (the AUROC ranged from 0.857–0.932). Thyroid ultrasound radiologists aided with THCaDxNLP achieved significantly higher performances than those without THCaDxNLP in terms of accuracy (93.8% vs. 87.2%; one-sided t-test, adjusted P = 0.003), precision (92.5% vs. 86.0%; P = 0.018), and F1 metric (94.2% vs. 86.4%; P = 0.007). CONCLUSIONS: THCaDxNLP achieved a high AUROC for the identification of thyroid cancer, and improved the accuracy, sensitivity, and precision of thyroid ultrasound radiologists. This warrants further investigation of THCaDxNLP in prospective clinical trials.
format Online
Article
Text
id pubmed-9196053
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Compuscript
record_format MEDLINE/PubMed
spelling pubmed-91960532022-06-24 Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study Zhang, Qiang Zhang, Sheng Li, Jianxin Pan, Yi Zhao, Jing Feng, Yixing Zhao, Yanhui Wang, Xiaoqing Zheng, Zhiming Yang, Xiangming Liu, Lixia Qin, Chunxin Zhao, Ke Liu, Xiaonan Li, Caixia Zhang, Liuyang Yang, Chunrui Zhuo, Na Zhang, Hong Liu, Jie Gao, Jinglei Di, Xiaoling Meng, Fanbo Ji, Wei Yang, Meng Xin, Xiaojie Wei, Xi Jin, Rui Zhang, Lun Wang, Xudong Song, Fengju Zheng, Xiangqian Gao, Ming Chen, Kexin Li, Xiangchun Cancer Biol Med Original Article OBJECTIVE: Large volume radiological text data have been accumulated since the incorporation of electronic health record (EHR) systems in clinical practice. We aimed to determine whether deep natural language processing algorithms could aid radiologists in improving thyroid cancer diagnosis. METHODS: Sonographic EHR data were obtained from the EHR database. Pathological reports were used as the gold standard for diagnosing thyroid cancer. We developed thyroid cancer diagnosis based on natural language processing (THCaDxNLP) to interpret unstructured sonographic text reports for thyroid cancer diagnosis. We used the area under the receiver operating characteristic curve (AUROC) as the primary metric to measure the performance of the THCaDxNLP. We compared the performance of thyroid ultrasound radiologists aided with THCaDxNLP vs. those without THCaDxNLP using 5 independent test sets. RESULTS: We obtained a total number of 788,129 sonographic radiological reports. The number of thyroid sonographic data points was 132,277, 18,400 of which were thyroid cancer patients. Among the 5 test sets, the numbers of patients per set were 439, 186, 82, 343, and 171. THCaDxNLP achieved high performance in identifying thyroid cancer patients (the AUROC ranged from 0.857–0.932). Thyroid ultrasound radiologists aided with THCaDxNLP achieved significantly higher performances than those without THCaDxNLP in terms of accuracy (93.8% vs. 87.2%; one-sided t-test, adjusted P = 0.003), precision (92.5% vs. 86.0%; P = 0.018), and F1 metric (94.2% vs. 86.4%; P = 0.007). CONCLUSIONS: THCaDxNLP achieved a high AUROC for the identification of thyroid cancer, and improved the accuracy, sensitivity, and precision of thyroid ultrasound radiologists. This warrants further investigation of THCaDxNLP in prospective clinical trials. Compuscript 2022-05-15 2021-09-07 /pmc/articles/PMC9196053/ /pubmed/34491007 http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0509 Text en Copyright: © 2022, Cancer Biology & Medicine https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY) 4.0 (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
spellingShingle Original Article
Zhang, Qiang
Zhang, Sheng
Li, Jianxin
Pan, Yi
Zhao, Jing
Feng, Yixing
Zhao, Yanhui
Wang, Xiaoqing
Zheng, Zhiming
Yang, Xiangming
Liu, Lixia
Qin, Chunxin
Zhao, Ke
Liu, Xiaonan
Li, Caixia
Zhang, Liuyang
Yang, Chunrui
Zhuo, Na
Zhang, Hong
Liu, Jie
Gao, Jinglei
Di, Xiaoling
Meng, Fanbo
Ji, Wei
Yang, Meng
Xin, Xiaojie
Wei, Xi
Jin, Rui
Zhang, Lun
Wang, Xudong
Song, Fengju
Zheng, Xiangqian
Gao, Ming
Chen, Kexin
Li, Xiangchun
Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
title Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
title_full Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
title_fullStr Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
title_full_unstemmed Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
title_short Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
title_sort improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196053/
https://www.ncbi.nlm.nih.gov/pubmed/34491007
http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0509
work_keys_str_mv AT zhangqiang improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhangsheng improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT lijianxin improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT panyi improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhaojing improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT fengyixing improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhaoyanhui improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT wangxiaoqing improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhengzhiming improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT yangxiangming improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT liulixia improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT qinchunxin improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhaoke improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT liuxiaonan improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT licaixia improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhangliuyang improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT yangchunrui improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhuona improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhanghong improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT liujie improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT gaojinglei improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT dixiaoling improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT mengfanbo improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT jiwei improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT yangmeng improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT xinxiaojie improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT weixi improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT jinrui improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhanglun improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT wangxudong improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT songfengju improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT zhengxiangqian improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT gaoming improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT chenkexin improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy
AT lixiangchun improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy