Cargando…
Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
OBJECTIVE: Large volume radiological text data have been accumulated since the incorporation of electronic health record (EHR) systems in clinical practice. We aimed to determine whether deep natural language processing algorithms could aid radiologists in improving thyroid cancer diagnosis. METHODS...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Compuscript
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196053/ https://www.ncbi.nlm.nih.gov/pubmed/34491007 http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0509 |
_version_ | 1784727102518460416 |
---|---|
author | Zhang, Qiang Zhang, Sheng Li, Jianxin Pan, Yi Zhao, Jing Feng, Yixing Zhao, Yanhui Wang, Xiaoqing Zheng, Zhiming Yang, Xiangming Liu, Lixia Qin, Chunxin Zhao, Ke Liu, Xiaonan Li, Caixia Zhang, Liuyang Yang, Chunrui Zhuo, Na Zhang, Hong Liu, Jie Gao, Jinglei Di, Xiaoling Meng, Fanbo Ji, Wei Yang, Meng Xin, Xiaojie Wei, Xi Jin, Rui Zhang, Lun Wang, Xudong Song, Fengju Zheng, Xiangqian Gao, Ming Chen, Kexin Li, Xiangchun |
author_facet | Zhang, Qiang Zhang, Sheng Li, Jianxin Pan, Yi Zhao, Jing Feng, Yixing Zhao, Yanhui Wang, Xiaoqing Zheng, Zhiming Yang, Xiangming Liu, Lixia Qin, Chunxin Zhao, Ke Liu, Xiaonan Li, Caixia Zhang, Liuyang Yang, Chunrui Zhuo, Na Zhang, Hong Liu, Jie Gao, Jinglei Di, Xiaoling Meng, Fanbo Ji, Wei Yang, Meng Xin, Xiaojie Wei, Xi Jin, Rui Zhang, Lun Wang, Xudong Song, Fengju Zheng, Xiangqian Gao, Ming Chen, Kexin Li, Xiangchun |
author_sort | Zhang, Qiang |
collection | PubMed |
description | OBJECTIVE: Large volume radiological text data have been accumulated since the incorporation of electronic health record (EHR) systems in clinical practice. We aimed to determine whether deep natural language processing algorithms could aid radiologists in improving thyroid cancer diagnosis. METHODS: Sonographic EHR data were obtained from the EHR database. Pathological reports were used as the gold standard for diagnosing thyroid cancer. We developed thyroid cancer diagnosis based on natural language processing (THCaDxNLP) to interpret unstructured sonographic text reports for thyroid cancer diagnosis. We used the area under the receiver operating characteristic curve (AUROC) as the primary metric to measure the performance of the THCaDxNLP. We compared the performance of thyroid ultrasound radiologists aided with THCaDxNLP vs. those without THCaDxNLP using 5 independent test sets. RESULTS: We obtained a total number of 788,129 sonographic radiological reports. The number of thyroid sonographic data points was 132,277, 18,400 of which were thyroid cancer patients. Among the 5 test sets, the numbers of patients per set were 439, 186, 82, 343, and 171. THCaDxNLP achieved high performance in identifying thyroid cancer patients (the AUROC ranged from 0.857–0.932). Thyroid ultrasound radiologists aided with THCaDxNLP achieved significantly higher performances than those without THCaDxNLP in terms of accuracy (93.8% vs. 87.2%; one-sided t-test, adjusted P = 0.003), precision (92.5% vs. 86.0%; P = 0.018), and F1 metric (94.2% vs. 86.4%; P = 0.007). CONCLUSIONS: THCaDxNLP achieved a high AUROC for the identification of thyroid cancer, and improved the accuracy, sensitivity, and precision of thyroid ultrasound radiologists. This warrants further investigation of THCaDxNLP in prospective clinical trials. |
format | Online Article Text |
id | pubmed-9196053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Compuscript |
record_format | MEDLINE/PubMed |
spelling | pubmed-91960532022-06-24 Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study Zhang, Qiang Zhang, Sheng Li, Jianxin Pan, Yi Zhao, Jing Feng, Yixing Zhao, Yanhui Wang, Xiaoqing Zheng, Zhiming Yang, Xiangming Liu, Lixia Qin, Chunxin Zhao, Ke Liu, Xiaonan Li, Caixia Zhang, Liuyang Yang, Chunrui Zhuo, Na Zhang, Hong Liu, Jie Gao, Jinglei Di, Xiaoling Meng, Fanbo Ji, Wei Yang, Meng Xin, Xiaojie Wei, Xi Jin, Rui Zhang, Lun Wang, Xudong Song, Fengju Zheng, Xiangqian Gao, Ming Chen, Kexin Li, Xiangchun Cancer Biol Med Original Article OBJECTIVE: Large volume radiological text data have been accumulated since the incorporation of electronic health record (EHR) systems in clinical practice. We aimed to determine whether deep natural language processing algorithms could aid radiologists in improving thyroid cancer diagnosis. METHODS: Sonographic EHR data were obtained from the EHR database. Pathological reports were used as the gold standard for diagnosing thyroid cancer. We developed thyroid cancer diagnosis based on natural language processing (THCaDxNLP) to interpret unstructured sonographic text reports for thyroid cancer diagnosis. We used the area under the receiver operating characteristic curve (AUROC) as the primary metric to measure the performance of the THCaDxNLP. We compared the performance of thyroid ultrasound radiologists aided with THCaDxNLP vs. those without THCaDxNLP using 5 independent test sets. RESULTS: We obtained a total number of 788,129 sonographic radiological reports. The number of thyroid sonographic data points was 132,277, 18,400 of which were thyroid cancer patients. Among the 5 test sets, the numbers of patients per set were 439, 186, 82, 343, and 171. THCaDxNLP achieved high performance in identifying thyroid cancer patients (the AUROC ranged from 0.857–0.932). Thyroid ultrasound radiologists aided with THCaDxNLP achieved significantly higher performances than those without THCaDxNLP in terms of accuracy (93.8% vs. 87.2%; one-sided t-test, adjusted P = 0.003), precision (92.5% vs. 86.0%; P = 0.018), and F1 metric (94.2% vs. 86.4%; P = 0.007). CONCLUSIONS: THCaDxNLP achieved a high AUROC for the identification of thyroid cancer, and improved the accuracy, sensitivity, and precision of thyroid ultrasound radiologists. This warrants further investigation of THCaDxNLP in prospective clinical trials. Compuscript 2022-05-15 2021-09-07 /pmc/articles/PMC9196053/ /pubmed/34491007 http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0509 Text en Copyright: © 2022, Cancer Biology & Medicine https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY) 4.0 (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Original Article Zhang, Qiang Zhang, Sheng Li, Jianxin Pan, Yi Zhao, Jing Feng, Yixing Zhao, Yanhui Wang, Xiaoqing Zheng, Zhiming Yang, Xiangming Liu, Lixia Qin, Chunxin Zhao, Ke Liu, Xiaonan Li, Caixia Zhang, Liuyang Yang, Chunrui Zhuo, Na Zhang, Hong Liu, Jie Gao, Jinglei Di, Xiaoling Meng, Fanbo Ji, Wei Yang, Meng Xin, Xiaojie Wei, Xi Jin, Rui Zhang, Lun Wang, Xudong Song, Fengju Zheng, Xiangqian Gao, Ming Chen, Kexin Li, Xiangchun Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study |
title | Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study |
title_full | Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study |
title_fullStr | Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study |
title_full_unstemmed | Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study |
title_short | Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study |
title_sort | improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196053/ https://www.ncbi.nlm.nih.gov/pubmed/34491007 http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0509 |
work_keys_str_mv | AT zhangqiang improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhangsheng improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT lijianxin improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT panyi improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhaojing improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT fengyixing improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhaoyanhui improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT wangxiaoqing improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhengzhiming improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT yangxiangming improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT liulixia improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT qinchunxin improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhaoke improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT liuxiaonan improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT licaixia improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhangliuyang improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT yangchunrui improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhuona improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhanghong improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT liujie improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT gaojinglei improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT dixiaoling improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT mengfanbo improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT jiwei improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT yangmeng improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT xinxiaojie improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT weixi improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT jinrui improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhanglun improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT wangxudong improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT songfengju improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT zhengxiangqian improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT gaoming improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT chenkexin improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy AT lixiangchun improveddiagnosisofthyroidcanceraidedwithdeeplearningappliedtosonographictextreportsaretrospectivemulticohortdiagnosticstudy |