Cargando…
Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction
BACKGROUND: Data drift can negatively impact the performance of machine learning algorithms (MLAs) that were trained on historical data. As such, MLAs should be continuously monitored and tuned to overcome the systematic changes that occur in the distribution of data. In this paper, we study the ext...
Autores principales: | Rahmani, Keyvan, Thapa, Rahul, Tsou, Peiling, Chetty, Satish Casie, Barnes, Gina, Lam, Carson, Tso, Chak Foon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196120/ https://www.ncbi.nlm.nih.gov/pubmed/35702157 http://dx.doi.org/10.1101/2022.06.06.22276062 |
Ejemplares similares
-
Multitask Learning With Recurrent Neural Networks for Acute Respiratory Distress Syndrome Prediction Using Only Electronic Health Record Data: Model Development and Validation Study
por: Lam, Carson, et al.
Publicado: (2022) -
Machine learning early prediction of respiratory syncytial virus in pediatric hospitalized patients
por: Tso, Chak Foon, et al.
Publicado: (2022) -
Semisupervised Deep Learning Techniques for Predicting Acute Respiratory Distress Syndrome From Time-Series Clinical Data: Model Development and Validation Study
por: Lam, Carson, et al.
Publicado: (2021) -
Predicting ventilator-associated pneumonia with machine learning
por: Giang, Christine, et al.
Publicado: (2021) -
Single-cell transcriptome analysis of the zebrafish embryonic trunk
por: Metikala, Sanjeeva, et al.
Publicado: (2021)