Cargando…
CancerBERT: a cancer domain-specific language model for extracting breast cancer phenotypes from electronic health records
OBJECTIVE: Accurate extraction of breast cancer patients’ phenotypes is important for clinical decision support and clinical research. This study developed and evaluated cancer domain pretrained CancerBERT models for extracting breast cancer phenotypes from clinical texts. We also investigated the e...
Autores principales: | Zhou, Sicheng, Wang, Nan, Wang, Liwei, Liu, Hongfang, Zhang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196678/ https://www.ncbi.nlm.nih.gov/pubmed/35333345 http://dx.doi.org/10.1093/jamia/ocac040 |
Ejemplares similares
-
A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study
por: Mitchell, Joseph Ross, et al.
Publicado: (2022) -
A cross-institutional evaluation on breast cancer phenotyping NLP algorithms on electronic health records
por: Zhou, Sicheng, et al.
Publicado: (2023) -
Using natural language processing to construct a metastatic breast cancer cohort from linked cancer registry and electronic medical records data
por: Ling, Albee Y, et al.
Publicado: (2019) -
Test collections for electronic health record-based clinical information retrieval
por: Wang, Yanshan, et al.
Publicado: (2019) -
Unified Medical Language System resources improve sieve-based generation and Bidirectional Encoder Representations from Transformers (BERT)–based ranking for concept normalization
por: Xu, Dongfang, et al.
Publicado: (2020)