Cargando…

Harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (EHR) dataset

OBJECTIVE: The goals of this study were to harmonize data from electronic health records (EHRs) into common units, and impute units that were missing. MATERIALS AND METHODS: The National COVID Cohort Collaborative (N3C) table of laboratory measurement data—over 3.1 billion patient records and over 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Bradwell, Katie R, Wooldridge, Jacob T, Amor, Benjamin, Bennett, Tellen D, Anand, Adit, Bremer, Carolyn, Yoo, Yun Jae, Qian, Zhenglong, Johnson, Steven G, Pfaff, Emily R, Girvin, Andrew T, Manna, Amin, Niehaus, Emily A, Hong, Stephanie S, Zhang, Xiaohan Tanner, Zhu, Richard L, Bissell, Mark, Qureshi, Nabeel, Saltz, Joel, Haendel, Melissa A, Chute, Christopher G, Lehmann, Harold P, Moffitt, Richard A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196692/
https://www.ncbi.nlm.nih.gov/pubmed/35435957
http://dx.doi.org/10.1093/jamia/ocac054
_version_ 1784727249090510848
author Bradwell, Katie R
Wooldridge, Jacob T
Amor, Benjamin
Bennett, Tellen D
Anand, Adit
Bremer, Carolyn
Yoo, Yun Jae
Qian, Zhenglong
Johnson, Steven G
Pfaff, Emily R
Girvin, Andrew T
Manna, Amin
Niehaus, Emily A
Hong, Stephanie S
Zhang, Xiaohan Tanner
Zhu, Richard L
Bissell, Mark
Qureshi, Nabeel
Saltz, Joel
Haendel, Melissa A
Chute, Christopher G
Lehmann, Harold P
Moffitt, Richard A
author_facet Bradwell, Katie R
Wooldridge, Jacob T
Amor, Benjamin
Bennett, Tellen D
Anand, Adit
Bremer, Carolyn
Yoo, Yun Jae
Qian, Zhenglong
Johnson, Steven G
Pfaff, Emily R
Girvin, Andrew T
Manna, Amin
Niehaus, Emily A
Hong, Stephanie S
Zhang, Xiaohan Tanner
Zhu, Richard L
Bissell, Mark
Qureshi, Nabeel
Saltz, Joel
Haendel, Melissa A
Chute, Christopher G
Lehmann, Harold P
Moffitt, Richard A
author_sort Bradwell, Katie R
collection PubMed
description OBJECTIVE: The goals of this study were to harmonize data from electronic health records (EHRs) into common units, and impute units that were missing. MATERIALS AND METHODS: The National COVID Cohort Collaborative (N3C) table of laboratory measurement data—over 3.1 billion patient records and over 19 000 unique measurement concepts in the Observational Medical Outcomes Partnership (OMOP) common-data-model format from 55 data partners. We grouped ontologically similar OMOP concepts together for 52 variables relevant to COVID-19 research, and developed a unit-harmonization pipeline comprised of (1) selecting a canonical unit for each measurement variable, (2) arriving at a formula for conversion, (3) obtaining clinical review of each formula, (4) applying the formula to convert data values in each unit into the target canonical unit, and (5) removing any harmonized value that fell outside of accepted value ranges for the variable. For data with missing units for all the results within a lab test for a data partner, we compared values with pooled values of all data partners, using the Kolmogorov-Smirnov test. RESULTS: Of the concepts without missing values, we harmonized 88.1% of the values, and imputed units for 78.2% of records where units were absent (41% of contributors’ records lacked units). DISCUSSION: The harmonization and inference methods developed herein can serve as a resource for initiatives aiming to extract insight from heterogeneous EHR collections. Unique properties of centralized data are harnessed to enable unit inference. CONCLUSION: The pipeline we developed for the pooled N3C data enables use of measurements that would otherwise be unavailable for analysis.
format Online
Article
Text
id pubmed-9196692
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-91966922022-06-15 Harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (EHR) dataset Bradwell, Katie R Wooldridge, Jacob T Amor, Benjamin Bennett, Tellen D Anand, Adit Bremer, Carolyn Yoo, Yun Jae Qian, Zhenglong Johnson, Steven G Pfaff, Emily R Girvin, Andrew T Manna, Amin Niehaus, Emily A Hong, Stephanie S Zhang, Xiaohan Tanner Zhu, Richard L Bissell, Mark Qureshi, Nabeel Saltz, Joel Haendel, Melissa A Chute, Christopher G Lehmann, Harold P Moffitt, Richard A J Am Med Inform Assoc Research and Applications OBJECTIVE: The goals of this study were to harmonize data from electronic health records (EHRs) into common units, and impute units that were missing. MATERIALS AND METHODS: The National COVID Cohort Collaborative (N3C) table of laboratory measurement data—over 3.1 billion patient records and over 19 000 unique measurement concepts in the Observational Medical Outcomes Partnership (OMOP) common-data-model format from 55 data partners. We grouped ontologically similar OMOP concepts together for 52 variables relevant to COVID-19 research, and developed a unit-harmonization pipeline comprised of (1) selecting a canonical unit for each measurement variable, (2) arriving at a formula for conversion, (3) obtaining clinical review of each formula, (4) applying the formula to convert data values in each unit into the target canonical unit, and (5) removing any harmonized value that fell outside of accepted value ranges for the variable. For data with missing units for all the results within a lab test for a data partner, we compared values with pooled values of all data partners, using the Kolmogorov-Smirnov test. RESULTS: Of the concepts without missing values, we harmonized 88.1% of the values, and imputed units for 78.2% of records where units were absent (41% of contributors’ records lacked units). DISCUSSION: The harmonization and inference methods developed herein can serve as a resource for initiatives aiming to extract insight from heterogeneous EHR collections. Unique properties of centralized data are harnessed to enable unit inference. CONCLUSION: The pipeline we developed for the pooled N3C data enables use of measurements that would otherwise be unavailable for analysis. Oxford University Press 2022-04-18 /pmc/articles/PMC9196692/ /pubmed/35435957 http://dx.doi.org/10.1093/jamia/ocac054 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Research and Applications
Bradwell, Katie R
Wooldridge, Jacob T
Amor, Benjamin
Bennett, Tellen D
Anand, Adit
Bremer, Carolyn
Yoo, Yun Jae
Qian, Zhenglong
Johnson, Steven G
Pfaff, Emily R
Girvin, Andrew T
Manna, Amin
Niehaus, Emily A
Hong, Stephanie S
Zhang, Xiaohan Tanner
Zhu, Richard L
Bissell, Mark
Qureshi, Nabeel
Saltz, Joel
Haendel, Melissa A
Chute, Christopher G
Lehmann, Harold P
Moffitt, Richard A
Harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (EHR) dataset
title Harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (EHR) dataset
title_full Harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (EHR) dataset
title_fullStr Harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (EHR) dataset
title_full_unstemmed Harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (EHR) dataset
title_short Harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (EHR) dataset
title_sort harmonizing units and values of quantitative data elements in a very large nationally pooled electronic health record (ehr) dataset
topic Research and Applications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196692/
https://www.ncbi.nlm.nih.gov/pubmed/35435957
http://dx.doi.org/10.1093/jamia/ocac054
work_keys_str_mv AT bradwellkatier harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT wooldridgejacobt harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT amorbenjamin harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT bennetttellend harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT anandadit harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT bremercarolyn harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT yooyunjae harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT qianzhenglong harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT johnsonsteveng harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT pfaffemilyr harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT girvinandrewt harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT mannaamin harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT niehausemilya harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT hongstephanies harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT zhangxiaohantanner harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT zhurichardl harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT bissellmark harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT qureshinabeel harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT saltzjoel harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT haendelmelissaa harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT chutechristopherg harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT lehmannharoldp harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT moffittricharda harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset
AT harmonizingunitsandvaluesofquantitativedataelementsinaverylargenationallypooledelectronichealthrecordehrdataset