Cargando…
Combining human and machine intelligence for clinical trial eligibility querying
OBJECTIVE: To combine machine efficiency and human intelligence for converting complex clinical trial eligibility criteria text into cohort queries. MATERIALS AND METHODS: Criteria2Query (C2Q) 2.0 was developed to enable real-time user intervention for criteria selection and simplification, parsing...
Autores principales: | Fang, Yilu, Idnay, Betina, Sun, Yingcheng, Liu, Hao, Chen, Zhehuan, Marder, Karen, Xu, Hua, Schnall, Rebecca, Weng, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196697/ https://www.ncbi.nlm.nih.gov/pubmed/35426943 http://dx.doi.org/10.1093/jamia/ocac051 |
Ejemplares similares
-
The suitability of UMLS and SNOMED-CT for encoding outcome concepts
por: Newbury, Abigail, et al.
Publicado: (2023) -
Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials
por: Miotto, Riccardo, et al.
Publicado: (2015) -
Criteria2Query: a natural language interface to clinical databases for cohort definition
por: Yuan, Chi, et al.
Publicado: (2019) -
The representativeness of eligible patients in type 2 diabetes trials: a case study using GIST 2.0
por: Sen, Anando, et al.
Publicado: (2017) -
OntoQuery: easy-to-use web-based OWL querying
por: Tudose, Ilinca, et al.
Publicado: (2013)