Cargando…
The Detection of Invisible Abnormal Metabolism in the FDG-PET Images of Patients With Anti-LGI1 Encephalitis by Machine Learning
OBJECTIVE: This study aims to detect the invisible metabolic abnormality in PET images of patients with anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis using a multivariate cross-classification method. METHODS: Participants were divided into two groups, namely, the training cohort and the...
Autores principales: | Pan, Jian, Lv, Ruijuan, Zhou, Guifei, Si, Run, Wang, Qun, Zhao, Xiaobin, Liu, Jiangang, Ai, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197115/ https://www.ncbi.nlm.nih.gov/pubmed/35711267 http://dx.doi.org/10.3389/fneur.2022.812439 |
Ejemplares similares
-
The Clinical Value of (18)F-FDG-PET in Autoimmune Encephalitis Associated With LGI1 Antibody
por: Liu, Xiao, et al.
Publicado: (2020) -
Semi-quantitative FDG-PET Analysis Increases the Sensitivity Compared With Visual Analysis in the Diagnosis of Autoimmune Encephalitis
por: Lv, Rui-Juan, et al.
Publicado: (2019) -
Recognition of seizure semiology and semiquantitative FDG‐PET analysis of anti‐LGI1 encephalitis
por: Li, Tao‐Ran, et al.
Publicado: (2021) -
Cortical metabolic characteristics of anti-leucine-rich glioma-inactivated 1 antibody encephalitis based on (18)F-FDG PET
por: Wang, Kai, et al.
Publicado: (2023) -
Pilomotor Seizures in a Patient With LGI1 Encephalitis
por: Yang, Jinxia, et al.
Publicado: (2020)