Cargando…
A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
Tacrolimus is a major immunosuppressor against post-transplant rejection in kidney transplant recipients. However, the narrow therapeutic index of tacrolimus and considerable variability among individuals are challenges for therapeutic outcomes. The aim of this study was to compare different machine...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197124/ https://www.ncbi.nlm.nih.gov/pubmed/35712101 http://dx.doi.org/10.3389/fmed.2022.813117 |
_version_ | 1784727336329936896 |
---|---|
author | Zhang, Qiwen Tian, Xueke Chen, Guang Yu, Ze Zhang, Xiaojian Lu, Jingli Zhang, Jinyuan Wang, Peile Hao, Xin Huang, Yining Wang, Zeyuan Gao, Fei Yang, Jing |
author_facet | Zhang, Qiwen Tian, Xueke Chen, Guang Yu, Ze Zhang, Xiaojian Lu, Jingli Zhang, Jinyuan Wang, Peile Hao, Xin Huang, Yining Wang, Zeyuan Gao, Fei Yang, Jing |
author_sort | Zhang, Qiwen |
collection | PubMed |
description | Tacrolimus is a major immunosuppressor against post-transplant rejection in kidney transplant recipients. However, the narrow therapeutic index of tacrolimus and considerable variability among individuals are challenges for therapeutic outcomes. The aim of this study was to compare different machine learning and deep learning algorithms and establish individualized dose prediction models by using the best performing algorithm. Therefore, among the 10 commonly used algorithms we compared, the TabNet algorithm outperformed other algorithms with the highest R(2) (0.824), the lowest prediction error [mean absolute error (MAE) 0.468, mean square error (MSE) 0.558, and root mean square error (RMSE) 0.745], and good performance of overestimated (5.29%) or underestimated dose percentage (8.52%). In the final prediction model, the last tacrolimus daily dose, the last tacrolimus therapeutic drug monitoring value, time after transplantation, hematocrit, serum creatinine, aspartate aminotransferase, weight, CYP3A5, body mass index, and uric acid were the most influential variables on tacrolimus daily dose. Our study provides a reference for the application of deep learning technique in tacrolimus dose estimation, and the TabNet model with desirable predictive performance is expected to be expanded and applied in future clinical practice. |
format | Online Article Text |
id | pubmed-9197124 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91971242022-06-15 A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques Zhang, Qiwen Tian, Xueke Chen, Guang Yu, Ze Zhang, Xiaojian Lu, Jingli Zhang, Jinyuan Wang, Peile Hao, Xin Huang, Yining Wang, Zeyuan Gao, Fei Yang, Jing Front Med (Lausanne) Medicine Tacrolimus is a major immunosuppressor against post-transplant rejection in kidney transplant recipients. However, the narrow therapeutic index of tacrolimus and considerable variability among individuals are challenges for therapeutic outcomes. The aim of this study was to compare different machine learning and deep learning algorithms and establish individualized dose prediction models by using the best performing algorithm. Therefore, among the 10 commonly used algorithms we compared, the TabNet algorithm outperformed other algorithms with the highest R(2) (0.824), the lowest prediction error [mean absolute error (MAE) 0.468, mean square error (MSE) 0.558, and root mean square error (RMSE) 0.745], and good performance of overestimated (5.29%) or underestimated dose percentage (8.52%). In the final prediction model, the last tacrolimus daily dose, the last tacrolimus therapeutic drug monitoring value, time after transplantation, hematocrit, serum creatinine, aspartate aminotransferase, weight, CYP3A5, body mass index, and uric acid were the most influential variables on tacrolimus daily dose. Our study provides a reference for the application of deep learning technique in tacrolimus dose estimation, and the TabNet model with desirable predictive performance is expected to be expanded and applied in future clinical practice. Frontiers Media S.A. 2022-05-27 /pmc/articles/PMC9197124/ /pubmed/35712101 http://dx.doi.org/10.3389/fmed.2022.813117 Text en Copyright © 2022 Zhang, Tian, Chen, Yu, Zhang, Lu, Zhang, Wang, Hao, Huang, Wang, Gao and Yang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Zhang, Qiwen Tian, Xueke Chen, Guang Yu, Ze Zhang, Xiaojian Lu, Jingli Zhang, Jinyuan Wang, Peile Hao, Xin Huang, Yining Wang, Zeyuan Gao, Fei Yang, Jing A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques |
title | A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques |
title_full | A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques |
title_fullStr | A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques |
title_full_unstemmed | A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques |
title_short | A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques |
title_sort | prediction model for tacrolimus daily dose in kidney transplant recipients with machine learning and deep learning techniques |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197124/ https://www.ncbi.nlm.nih.gov/pubmed/35712101 http://dx.doi.org/10.3389/fmed.2022.813117 |
work_keys_str_mv | AT zhangqiwen apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT tianxueke apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT chenguang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT yuze apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT zhangxiaojian apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT lujingli apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT zhangjinyuan apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT wangpeile apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT haoxin apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT huangyining apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT wangzeyuan apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT gaofei apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT yangjing apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT zhangqiwen predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT tianxueke predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT chenguang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT yuze predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT zhangxiaojian predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT lujingli predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT zhangjinyuan predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT wangpeile predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT haoxin predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT huangyining predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT wangzeyuan predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT gaofei predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques AT yangjing predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques |