Cargando…

A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques

Tacrolimus is a major immunosuppressor against post-transplant rejection in kidney transplant recipients. However, the narrow therapeutic index of tacrolimus and considerable variability among individuals are challenges for therapeutic outcomes. The aim of this study was to compare different machine...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Qiwen, Tian, Xueke, Chen, Guang, Yu, Ze, Zhang, Xiaojian, Lu, Jingli, Zhang, Jinyuan, Wang, Peile, Hao, Xin, Huang, Yining, Wang, Zeyuan, Gao, Fei, Yang, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197124/
https://www.ncbi.nlm.nih.gov/pubmed/35712101
http://dx.doi.org/10.3389/fmed.2022.813117
_version_ 1784727336329936896
author Zhang, Qiwen
Tian, Xueke
Chen, Guang
Yu, Ze
Zhang, Xiaojian
Lu, Jingli
Zhang, Jinyuan
Wang, Peile
Hao, Xin
Huang, Yining
Wang, Zeyuan
Gao, Fei
Yang, Jing
author_facet Zhang, Qiwen
Tian, Xueke
Chen, Guang
Yu, Ze
Zhang, Xiaojian
Lu, Jingli
Zhang, Jinyuan
Wang, Peile
Hao, Xin
Huang, Yining
Wang, Zeyuan
Gao, Fei
Yang, Jing
author_sort Zhang, Qiwen
collection PubMed
description Tacrolimus is a major immunosuppressor against post-transplant rejection in kidney transplant recipients. However, the narrow therapeutic index of tacrolimus and considerable variability among individuals are challenges for therapeutic outcomes. The aim of this study was to compare different machine learning and deep learning algorithms and establish individualized dose prediction models by using the best performing algorithm. Therefore, among the 10 commonly used algorithms we compared, the TabNet algorithm outperformed other algorithms with the highest R(2) (0.824), the lowest prediction error [mean absolute error (MAE) 0.468, mean square error (MSE) 0.558, and root mean square error (RMSE) 0.745], and good performance of overestimated (5.29%) or underestimated dose percentage (8.52%). In the final prediction model, the last tacrolimus daily dose, the last tacrolimus therapeutic drug monitoring value, time after transplantation, hematocrit, serum creatinine, aspartate aminotransferase, weight, CYP3A5, body mass index, and uric acid were the most influential variables on tacrolimus daily dose. Our study provides a reference for the application of deep learning technique in tacrolimus dose estimation, and the TabNet model with desirable predictive performance is expected to be expanded and applied in future clinical practice.
format Online
Article
Text
id pubmed-9197124
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-91971242022-06-15 A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques Zhang, Qiwen Tian, Xueke Chen, Guang Yu, Ze Zhang, Xiaojian Lu, Jingli Zhang, Jinyuan Wang, Peile Hao, Xin Huang, Yining Wang, Zeyuan Gao, Fei Yang, Jing Front Med (Lausanne) Medicine Tacrolimus is a major immunosuppressor against post-transplant rejection in kidney transplant recipients. However, the narrow therapeutic index of tacrolimus and considerable variability among individuals are challenges for therapeutic outcomes. The aim of this study was to compare different machine learning and deep learning algorithms and establish individualized dose prediction models by using the best performing algorithm. Therefore, among the 10 commonly used algorithms we compared, the TabNet algorithm outperformed other algorithms with the highest R(2) (0.824), the lowest prediction error [mean absolute error (MAE) 0.468, mean square error (MSE) 0.558, and root mean square error (RMSE) 0.745], and good performance of overestimated (5.29%) or underestimated dose percentage (8.52%). In the final prediction model, the last tacrolimus daily dose, the last tacrolimus therapeutic drug monitoring value, time after transplantation, hematocrit, serum creatinine, aspartate aminotransferase, weight, CYP3A5, body mass index, and uric acid were the most influential variables on tacrolimus daily dose. Our study provides a reference for the application of deep learning technique in tacrolimus dose estimation, and the TabNet model with desirable predictive performance is expected to be expanded and applied in future clinical practice. Frontiers Media S.A. 2022-05-27 /pmc/articles/PMC9197124/ /pubmed/35712101 http://dx.doi.org/10.3389/fmed.2022.813117 Text en Copyright © 2022 Zhang, Tian, Chen, Yu, Zhang, Lu, Zhang, Wang, Hao, Huang, Wang, Gao and Yang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Medicine
Zhang, Qiwen
Tian, Xueke
Chen, Guang
Yu, Ze
Zhang, Xiaojian
Lu, Jingli
Zhang, Jinyuan
Wang, Peile
Hao, Xin
Huang, Yining
Wang, Zeyuan
Gao, Fei
Yang, Jing
A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_full A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_fullStr A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_full_unstemmed A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_short A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
title_sort prediction model for tacrolimus daily dose in kidney transplant recipients with machine learning and deep learning techniques
topic Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197124/
https://www.ncbi.nlm.nih.gov/pubmed/35712101
http://dx.doi.org/10.3389/fmed.2022.813117
work_keys_str_mv AT zhangqiwen apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT tianxueke apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT chenguang apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT yuze apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT zhangxiaojian apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT lujingli apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT zhangjinyuan apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT wangpeile apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT haoxin apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT huangyining apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT wangzeyuan apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT gaofei apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT yangjing apredictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT zhangqiwen predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT tianxueke predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT chenguang predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT yuze predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT zhangxiaojian predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT lujingli predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT zhangjinyuan predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT wangpeile predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT haoxin predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT huangyining predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT wangzeyuan predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT gaofei predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques
AT yangjing predictionmodelfortacrolimusdailydoseinkidneytransplantrecipientswithmachinelearninganddeeplearningtechniques