Cargando…

Integrative analysis of clinical and epigenetic biomarkers of mortality

DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome‐wide association study of whole blood DNAm in relation to mortality i...

Descripción completa

Detalles Bibliográficos
Autores principales: Huan, Tianxiao, Nguyen, Steve, Colicino, Elena, Ochoa‐Rosales, Carolina, Hill, W. David, Brody, Jennifer A., Soerensen, Mette, Zhang, Yan, Baldassari, Antoine, Elhadad, Mohamed Ahmed, Toshiko, Tanaka, Zheng, Yinan, Domingo‐Relloso, Arce, Lee, Dong Heon, Ma, Jiantao, Yao, Chen, Liu, Chunyu, Hwang, Shih‐Jen, Joehanes, Roby, Fornage, Myriam, Bressler, Jan, van Meurs, Joyce B.J., Debrabant, Birgit, Mengel‐From, Jonas, Hjelmborg, Jacob, Christensen, Kaare, Vokonas, Pantel, Schwartz, Joel, Gahrib, Sina A., Sotoodehnia, Nona, Sitlani, Colleen M., Kunze, Sonja, Gieger, Christian, Peters, Annette, Waldenberger, Melanie, Deary, Ian J., Ferrucci, Luigi, Qu, Yishu, Greenland, Philip, Lloyd‐Jones, Donald M., Hou, Lifang, Bandinelli, Stefania, Voortman, Trudy, Hermann, Brenner, Baccarelli, Andrea, Whitsel, Eric, Pankow, James S., Levy, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197414/
https://www.ncbi.nlm.nih.gov/pubmed/35546478
http://dx.doi.org/10.1111/acel.13608
_version_ 1784727403837259776
author Huan, Tianxiao
Nguyen, Steve
Colicino, Elena
Ochoa‐Rosales, Carolina
Hill, W. David
Brody, Jennifer A.
Soerensen, Mette
Zhang, Yan
Baldassari, Antoine
Elhadad, Mohamed Ahmed
Toshiko, Tanaka
Zheng, Yinan
Domingo‐Relloso, Arce
Lee, Dong Heon
Ma, Jiantao
Yao, Chen
Liu, Chunyu
Hwang, Shih‐Jen
Joehanes, Roby
Fornage, Myriam
Bressler, Jan
van Meurs, Joyce B.J.
Debrabant, Birgit
Mengel‐From, Jonas
Hjelmborg, Jacob
Christensen, Kaare
Vokonas, Pantel
Schwartz, Joel
Gahrib, Sina A.
Sotoodehnia, Nona
Sitlani, Colleen M.
Kunze, Sonja
Gieger, Christian
Peters, Annette
Waldenberger, Melanie
Deary, Ian J.
Ferrucci, Luigi
Qu, Yishu
Greenland, Philip
Lloyd‐Jones, Donald M.
Hou, Lifang
Bandinelli, Stefania
Voortman, Trudy
Hermann, Brenner
Baccarelli, Andrea
Whitsel, Eric
Pankow, James S.
Levy, Daniel
author_facet Huan, Tianxiao
Nguyen, Steve
Colicino, Elena
Ochoa‐Rosales, Carolina
Hill, W. David
Brody, Jennifer A.
Soerensen, Mette
Zhang, Yan
Baldassari, Antoine
Elhadad, Mohamed Ahmed
Toshiko, Tanaka
Zheng, Yinan
Domingo‐Relloso, Arce
Lee, Dong Heon
Ma, Jiantao
Yao, Chen
Liu, Chunyu
Hwang, Shih‐Jen
Joehanes, Roby
Fornage, Myriam
Bressler, Jan
van Meurs, Joyce B.J.
Debrabant, Birgit
Mengel‐From, Jonas
Hjelmborg, Jacob
Christensen, Kaare
Vokonas, Pantel
Schwartz, Joel
Gahrib, Sina A.
Sotoodehnia, Nona
Sitlani, Colleen M.
Kunze, Sonja
Gieger, Christian
Peters, Annette
Waldenberger, Melanie
Deary, Ian J.
Ferrucci, Luigi
Qu, Yishu
Greenland, Philip
Lloyd‐Jones, Donald M.
Hou, Lifang
Bandinelli, Stefania
Voortman, Trudy
Hermann, Brenner
Baccarelli, Andrea
Whitsel, Eric
Pankow, James S.
Levy, Daniel
author_sort Huan, Tianxiao
collection PubMed
description DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome‐wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n = 15,013). During a mean follow‐up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry‐stratified meta‐analysis of all‐cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p < 1 × 10(−7), of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm‐based prediction models for all‐cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C‐index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, P (MR) = 4.1 × 10(−4)) and negatively associated with longevity (Beta = −1.9, P (MR) = 0.02). Pathway analysis revealed that genes associated with mortality‐related CpGs are enriched for immune‐ and cancer‐related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.
format Online
Article
Text
id pubmed-9197414
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-91974142022-06-21 Integrative analysis of clinical and epigenetic biomarkers of mortality Huan, Tianxiao Nguyen, Steve Colicino, Elena Ochoa‐Rosales, Carolina Hill, W. David Brody, Jennifer A. Soerensen, Mette Zhang, Yan Baldassari, Antoine Elhadad, Mohamed Ahmed Toshiko, Tanaka Zheng, Yinan Domingo‐Relloso, Arce Lee, Dong Heon Ma, Jiantao Yao, Chen Liu, Chunyu Hwang, Shih‐Jen Joehanes, Roby Fornage, Myriam Bressler, Jan van Meurs, Joyce B.J. Debrabant, Birgit Mengel‐From, Jonas Hjelmborg, Jacob Christensen, Kaare Vokonas, Pantel Schwartz, Joel Gahrib, Sina A. Sotoodehnia, Nona Sitlani, Colleen M. Kunze, Sonja Gieger, Christian Peters, Annette Waldenberger, Melanie Deary, Ian J. Ferrucci, Luigi Qu, Yishu Greenland, Philip Lloyd‐Jones, Donald M. Hou, Lifang Bandinelli, Stefania Voortman, Trudy Hermann, Brenner Baccarelli, Andrea Whitsel, Eric Pankow, James S. Levy, Daniel Aging Cell Research Articles DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome‐wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n = 15,013). During a mean follow‐up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry‐stratified meta‐analysis of all‐cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p < 1 × 10(−7), of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm‐based prediction models for all‐cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C‐index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, P (MR) = 4.1 × 10(−4)) and negatively associated with longevity (Beta = −1.9, P (MR) = 0.02). Pathway analysis revealed that genes associated with mortality‐related CpGs are enriched for immune‐ and cancer‐related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk. John Wiley and Sons Inc. 2022-05-12 2022-06 /pmc/articles/PMC9197414/ /pubmed/35546478 http://dx.doi.org/10.1111/acel.13608 Text en © 2022 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Huan, Tianxiao
Nguyen, Steve
Colicino, Elena
Ochoa‐Rosales, Carolina
Hill, W. David
Brody, Jennifer A.
Soerensen, Mette
Zhang, Yan
Baldassari, Antoine
Elhadad, Mohamed Ahmed
Toshiko, Tanaka
Zheng, Yinan
Domingo‐Relloso, Arce
Lee, Dong Heon
Ma, Jiantao
Yao, Chen
Liu, Chunyu
Hwang, Shih‐Jen
Joehanes, Roby
Fornage, Myriam
Bressler, Jan
van Meurs, Joyce B.J.
Debrabant, Birgit
Mengel‐From, Jonas
Hjelmborg, Jacob
Christensen, Kaare
Vokonas, Pantel
Schwartz, Joel
Gahrib, Sina A.
Sotoodehnia, Nona
Sitlani, Colleen M.
Kunze, Sonja
Gieger, Christian
Peters, Annette
Waldenberger, Melanie
Deary, Ian J.
Ferrucci, Luigi
Qu, Yishu
Greenland, Philip
Lloyd‐Jones, Donald M.
Hou, Lifang
Bandinelli, Stefania
Voortman, Trudy
Hermann, Brenner
Baccarelli, Andrea
Whitsel, Eric
Pankow, James S.
Levy, Daniel
Integrative analysis of clinical and epigenetic biomarkers of mortality
title Integrative analysis of clinical and epigenetic biomarkers of mortality
title_full Integrative analysis of clinical and epigenetic biomarkers of mortality
title_fullStr Integrative analysis of clinical and epigenetic biomarkers of mortality
title_full_unstemmed Integrative analysis of clinical and epigenetic biomarkers of mortality
title_short Integrative analysis of clinical and epigenetic biomarkers of mortality
title_sort integrative analysis of clinical and epigenetic biomarkers of mortality
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197414/
https://www.ncbi.nlm.nih.gov/pubmed/35546478
http://dx.doi.org/10.1111/acel.13608
work_keys_str_mv AT huantianxiao integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT nguyensteve integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT colicinoelena integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT ochoarosalescarolina integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT hillwdavid integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT brodyjennifera integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT soerensenmette integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT zhangyan integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT baldassariantoine integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT elhadadmohamedahmed integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT toshikotanaka integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT zhengyinan integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT domingorellosoarce integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT leedongheon integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT majiantao integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT yaochen integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT liuchunyu integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT hwangshihjen integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT joehanesroby integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT fornagemyriam integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT bresslerjan integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT vanmeursjoycebj integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT debrabantbirgit integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT mengelfromjonas integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT hjelmborgjacob integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT christensenkaare integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT vokonaspantel integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT schwartzjoel integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT gahribsinaa integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT sotoodehnianona integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT sitlanicolleenm integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT kunzesonja integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT giegerchristian integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT petersannette integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT waldenbergermelanie integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT dearyianj integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT ferrucciluigi integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT quyishu integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT greenlandphilip integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT lloydjonesdonaldm integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT houlifang integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT bandinellistefania integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT voortmantrudy integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT hermannbrenner integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT baccarelliandrea integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT whitseleric integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT pankowjamess integrativeanalysisofclinicalandepigeneticbiomarkersofmortality
AT levydaniel integrativeanalysisofclinicalandepigeneticbiomarkersofmortality