Cargando…
Building Efficient CNN Architectures for Histopathology Images Analysis: A Case-Study in Tumor-Infiltrating Lymphocytes Classification
BACKGROUND: Deep learning methods have demonstrated remarkable performance in pathology image analysis, but they are computationally very demanding. The aim of our study is to reduce their computational cost to enable their use with large tissue image datasets. METHODS: We propose a method called Ne...
Autores principales: | Meirelles, André L. S., Kurc, Tahsin, Kong, Jun, Ferreira, Renato, Saltz, Joel H., Teodoro, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197439/ https://www.ncbi.nlm.nih.gov/pubmed/35712087 http://dx.doi.org/10.3389/fmed.2022.894430 |
Ejemplares similares
-
Effective and efficient active learning for deep learning-based tissue image analysis
por: Meirelles, André L S, et al.
Publicado: (2023) -
A Methodology for Texture Feature-based Quality Assessment in Nucleus Segmentation of Histopathology Image
por: Wen, Si, et al.
Publicado: (2017) -
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
por: Abousamra, Shahira, et al.
Publicado: (2022) -
Spatial Characterization of Tumor-Infiltrating Lymphocytes and Breast Cancer Progression
por: Fassler, Danielle J., et al.
Publicado: (2022) -
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
por: Hou, Le, et al.
Publicado: (2020)