Cargando…
A quantitative approach to the choice of number of samples for percentile estimation in bootstrap and visual predictive check analyses
Understanding the uncertainty in parameter estimates or in derived secondary variables is important in all data analysis activities. In pharmacometrics, this is often done based on the standard errors from the variance–covariance matrix of the estimates. Confidence intervals derived in this way are...
Autores principales: | Jonsson, E. Niclas, Nyberg, Joakim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197539/ https://www.ncbi.nlm.nih.gov/pubmed/35353958 http://dx.doi.org/10.1002/psp4.12790 |
Ejemplares similares
-
Effective Visual Communication for the Quantitative Scientist
por: Vandemeulebroecke, Marc, et al.
Publicado: (2019) -
Power Determination During Drug Development: Is Optimizing the Sample Size Based on Exposure‐Response Analyses Underutilized?
por: Jones, Aksana K., et al.
Publicado: (2019) -
Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates
por: Johnson, William D., et al.
Publicado: (2016) -
Logic Modeling in Quantitative Systems Pharmacology
por: Traynard, Pauline, et al.
Publicado: (2017) -
DementiaBank: Theoretical Rationale, Protocol, and Illustrative Analyses
por: Lanzi, Alyssa M., et al.
Publicado: (2023)