Cargando…
Riemannian geometry-based transfer learning for reducing training time in c-VEP BCIs
One of the main problems that a brain-computer interface (BCI) face is that a training stage is required for acquiring training data to calibrate its classification model just before every use. Transfer learning is a promising method for addressing the problem. In this paper, we propose a Riemannian...
Autores principales: | Ying, Jiahui, Wei, Qingguo, Zhou, Xichen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197830/ https://www.ncbi.nlm.nih.gov/pubmed/35701505 http://dx.doi.org/10.1038/s41598-022-14026-y |
Ejemplares similares
-
Dynamic time window mechanism for time synchronous VEP-based BCIs—Performance evaluation with a dictionary-supported BCI speller employing SSVEP and c-VEP
por: Gembler, Felix, et al.
Publicado: (2019) -
Influence of spatial frequency in visual stimuli for cVEP-based BCIs: evaluation of performance and user experience
por: Fernández-Rodríguez, Álvaro, et al.
Publicado: (2023) -
Five Shades of Grey: Exploring Quintary m-Sequences for More User-Friendly c-VEP-Based BCIs
por: Gembler, Felix W., et al.
Publicado: (2020) -
Riemannian geometry
por: Petersen, Peter
Publicado: (2016) -
Riemannian geometry
por: Petersen, Peter
Publicado: (1998)