Cargando…
Change detection based on unsupervised sparse representation for fundus image pair
Detecting changes is an important issue for ophthalmology to compare longitudinal fundus images at different stages and obtain change regions. Illumination variations bring distractions on the change regions by the pixel-by-pixel comparison. In this paper, a new unsupervised change detection method...
Autores principales: | Fu, Yinghua, Zhao, Xing, Liang, Yong, Zhao, Tiejun, Wang, Chaoli, Zhang, Dawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197950/ https://www.ncbi.nlm.nih.gov/pubmed/35701500 http://dx.doi.org/10.1038/s41598-022-13754-5 |
Ejemplares similares
-
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021) -
Learning unsupervised feature representations for single cell microscopy images with paired cell inpainting
por: Lu, Alex X., et al.
Publicado: (2019) -
Saliency Detection Using Sparse and Nonlinear Feature Representation
por: Anwar, Shahzad, et al.
Publicado: (2014) -
Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification
por: Yavuz, Zafer, et al.
Publicado: (2017) -
Unsupervised Approaches for the Segmentation of Dry ARMD Lesions in Eye Fundus cSLO Images
por: Royer, Clément, et al.
Publicado: (2021)