Cargando…
Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy
The localization dynamics of excitons in organic semiconductors influence the efficiency of charge transfer and separation in these materials. Here we apply time-resolved X-ray absorption spectroscopy to track photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthioph...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198071/ https://www.ncbi.nlm.nih.gov/pubmed/35701418 http://dx.doi.org/10.1038/s41467-022-31008-w |
_version_ | 1784727544340152320 |
---|---|
author | Garratt, D. Misiekis, L. Wood, D. Larsen, E. W. Matthews, M. Alexander, O. Ye, P. Jarosch, S. Ferchaud, C. Strüber, C. Johnson, A. S. Bakulin, A. A. Penfold, T. J. Marangos, J. P. |
author_facet | Garratt, D. Misiekis, L. Wood, D. Larsen, E. W. Matthews, M. Alexander, O. Ye, P. Jarosch, S. Ferchaud, C. Strüber, C. Johnson, A. S. Bakulin, A. A. Penfold, T. J. Marangos, J. P. |
author_sort | Garratt, D. |
collection | PubMed |
description | The localization dynamics of excitons in organic semiconductors influence the efficiency of charge transfer and separation in these materials. Here we apply time-resolved X-ray absorption spectroscopy to track photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthiophene) (P3HT) commonly used in solar cell devices. The π→π(*) transition, the first step of solar energy conversion, is pumped with a 15 fs optical pulse and the dynamics are probed by an attosecond soft X-ray pulse at the carbon K-edge. We observe X-ray spectroscopic signatures of the initially hot excitonic state, indicating that it is delocalized over multiple polymer chains. This undergoes a rapid evolution on a sub 50 fs timescale which can be directly associated with cooling and localization to form either a localized exciton or polaron pair. |
format | Online Article Text |
id | pubmed-9198071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-91980712022-06-16 Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy Garratt, D. Misiekis, L. Wood, D. Larsen, E. W. Matthews, M. Alexander, O. Ye, P. Jarosch, S. Ferchaud, C. Strüber, C. Johnson, A. S. Bakulin, A. A. Penfold, T. J. Marangos, J. P. Nat Commun Article The localization dynamics of excitons in organic semiconductors influence the efficiency of charge transfer and separation in these materials. Here we apply time-resolved X-ray absorption spectroscopy to track photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthiophene) (P3HT) commonly used in solar cell devices. The π→π(*) transition, the first step of solar energy conversion, is pumped with a 15 fs optical pulse and the dynamics are probed by an attosecond soft X-ray pulse at the carbon K-edge. We observe X-ray spectroscopic signatures of the initially hot excitonic state, indicating that it is delocalized over multiple polymer chains. This undergoes a rapid evolution on a sub 50 fs timescale which can be directly associated with cooling and localization to form either a localized exciton or polaron pair. Nature Publishing Group UK 2022-06-14 /pmc/articles/PMC9198071/ /pubmed/35701418 http://dx.doi.org/10.1038/s41467-022-31008-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Garratt, D. Misiekis, L. Wood, D. Larsen, E. W. Matthews, M. Alexander, O. Ye, P. Jarosch, S. Ferchaud, C. Strüber, C. Johnson, A. S. Bakulin, A. A. Penfold, T. J. Marangos, J. P. Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy |
title | Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy |
title_full | Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy |
title_fullStr | Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy |
title_full_unstemmed | Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy |
title_short | Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy |
title_sort | direct observation of ultrafast exciton localization in an organic semiconductor with soft x-ray transient absorption spectroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198071/ https://www.ncbi.nlm.nih.gov/pubmed/35701418 http://dx.doi.org/10.1038/s41467-022-31008-w |
work_keys_str_mv | AT garrattd directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT misiekisl directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT woodd directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT larsenew directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT matthewsm directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT alexandero directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT yep directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT jaroschs directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT ferchaudc directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT struberc directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT johnsonas directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT bakulinaa directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT penfoldtj directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy AT marangosjp directobservationofultrafastexcitonlocalizationinanorganicsemiconductorwithsoftxraytransientabsorptionspectroscopy |