Cargando…
Deep convolutional neural networks for automated scoring of pentagon copying test results
This study aims to investigate the accuracy of a fine-tuned deep convolutional neural network (CNN) for evaluating responses to the pentagon copying test (PCT). To develop a CNN that could classify PCT images, we fine-tuned and compared the pre-trained CNNs (GoogLeNet, VGG-16, ResNet-50, Inception-v...
Autores principales: | Maruta, Jumpei, Uchida, Kentaro, Kurozumi, Hideo, Nogi, Satoshi, Akada, Satoshi, Nakanishi, Aki, Shinoda, Miki, Shiba, Masatsugu, Inoue, Koki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198090/ https://www.ncbi.nlm.nih.gov/pubmed/35701481 http://dx.doi.org/10.1038/s41598-022-13984-7 |
Ejemplares similares
-
Utility of olfactory identification test for screening of cognitive dysfunction in community-dwelling older adults
por: Nogi, Satoshi, et al.
Publicado: (2021) -
The standardised copy of pentagons test
por: Fountoulakis, Konstantinos N, et al.
Publicado: (2011) -
Dimensionally regulated pentagon integrals
por: Bern, Zvi, et al.
Publicado: (1994) -
Shannon entropy: A novel parameter for quantifying pentagon copying performance in non-demented Parkinson's disease patients
por: Brabenec, Lubos, et al.
Publicado: (2022) -
Experimental Realization of a Quantum Pentagonal Lattice
por: Yamaguchi, Hironori, et al.
Publicado: (2015)