Cargando…
Radiomics-based machine learning models to distinguish between metastatic and healthy bone using lesion-center-based geometric regions of interest
Radiomics-based machine learning classifiers have shown potential for detecting bone metastases (BM) and for evaluating BM response to radiotherapy (RT). However, current radiomics models require large datasets of images with expert-segmented 3D regions of interest (ROIs). Full ROI segmentation is t...
Autores principales: | Naseri, Hossein, Skamene, Sonia, Tolba, Marwan, Faye, Mame Daro, Ramia, Paul, Khriguian, Julia, Patrick, Haley, Andrade Hernandez, Aixa X., David, Marc, Kildea, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198102/ https://www.ncbi.nlm.nih.gov/pubmed/35701461 http://dx.doi.org/10.1038/s41598-022-13379-8 |
Ejemplares similares
-
Advances in Radiation Oncology for the Treatment of Cervical Cancer
por: Faye, Mame Daro, et al.
Publicado: (2022) -
Assessment of Selective mRNA Translation in Mammalian Cells by Polysome Profiling
por: Faye, Mame Daro, et al.
Publicado: (2014) -
Combined radiotherapy and immunotherapy in urothelial bladder cancer: harnessing the full potential of the anti-tumor immune response
por: Daro-Faye, Mame, et al.
Publicado: (2020) -
An Ultrasonic-Based Radiomics Nomogram for Distinguishing Between Benign and Malignant Solid Renal Masses
por: Li, Chunxiang, et al.
Publicado: (2022) -
A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours
por: Sun, Weikai, et al.
Publicado: (2021)