Cargando…

Polyherbal formulation exerts wound healing, anti-inflammatory, angiogenic and antimicrobial properties: Potential role in the treatment of diabetic foot ulcers

Diabetic foot ulcer (DFU) is a common and devastating complication in diabetic patients and is associated with an elevated risk of amputation and mortality. DFU remains a major therapeutic challenge due to poor understanding of its underlying pathogenesis. This complication is characterized by impai...

Descripción completa

Detalles Bibliográficos
Autores principales: Chumpolphant, Sawarin, Suwatronnakorn, Maneewan, Issaravanich, Somchai, Tencomnao, Tewin, Prasansuklab, Anchalee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198379/
https://www.ncbi.nlm.nih.gov/pubmed/35721231
http://dx.doi.org/10.1016/j.sjbs.2022.103330
Descripción
Sumario:Diabetic foot ulcer (DFU) is a common and devastating complication in diabetic patients and is associated with an elevated risk of amputation and mortality. DFU remains a major therapeutic challenge due to poor understanding of its underlying pathogenesis. This complication is characterized by impaired wound healing; however, mechanisms causing this impairment are complicated and involve interactions between many different cell types and infections. In addition to other conventional DFU treatments, herbal foot baths are also common, although little is known about their mechanisms of action, and they contain a wide variety of herbal ingredients. In this study, we aimed to examine the effects of three polyherbal formulations consisting of medicinal plants used in traditional Thai herbal foot baths on wound healing, anti-inflammation, angiogenesis, and extracellular matrix modulation using high-concentration glucose-treated human keratinocytes, in addition to antibacterial evaluation. Our results showed that formulation 3 (F3) possessed the greatest potential to restore the impairment of keratinocytes caused by high glucose concentrations. We found that F3 could inhibit the growth of Staphylococcus aureus, accelerate wound healing, and upregulate the expression of TIMP-1, VEGF, and TGF-β, and downregulate the expression of TNF-α, IL-6, and MMP-9. Collectively, these data support the potential of F3 for therapeutic development in the treatment of DFU.