Cargando…
Multi-site harmonization of MRI data uncovers machine-learning discrimination capability in barely separable populations: An example from the ABIDE dataset
Machine Learning (ML) techniques have been widely used in Neuroimaging studies of Autism Spectrum Disorders (ASD) both to identify possible brain alterations related to this condition and to evaluate the predictive power of brain imaging modalities. The collection and public sharing of large imaging...
Autores principales: | Saponaro, Sara, Giuliano, Alessia, Bellotti, Roberto, Lombardi, Angela, Tangaro, Sabina, Oliva, Piernicola, Calderoni, Sara, Retico, Alessandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198380/ https://www.ncbi.nlm.nih.gov/pubmed/35700598 http://dx.doi.org/10.1016/j.nicl.2022.103082 |
Ejemplares similares
-
Effect of data harmonization of multicentric dataset in ASD/TD classification
por: Serra, Giacomo, et al.
Publicado: (2023) -
Evaluation of Altered Functional Connections in Male Children With Autism Spectrum Disorders on Multiple-Site Data Optimized With Machine Learning
por: Spera, Giovanna, et al.
Publicado: (2019) -
Extensive Evaluation of Morphological Statistical Harmonization for Brain Age Prediction
por: Lombardi, Angela, et al.
Publicado: (2020) -
One-Class Support Vector Machines Identify the Language and Default Mode Regions As Common Patterns of Structural Alterations in Young Children with Autism Spectrum Disorders
por: Retico, Alessandra, et al.
Publicado: (2016) -
The impact of harmonization on radiomic features in Parkinson’s disease and healthy controls: A multicenter study
por: Tafuri, Benedetta, et al.
Publicado: (2022)