Cargando…
Iteratively regularized Gauss–Newton type methods for approximating quasi–solutions of irregular nonlinear operator equations in Hilbert space with an application to COVID–19 epidemic dynamics()
We investigate a class of iteratively regularized methods for finding a quasi–solution of a noisy nonlinear irregular operator equation in Hilbert space. The iteration uses an a priori stopping rule involving the error level in input data. In assumptions that the Frechet derivative of the problem op...
Autores principales: | Kokurin, M.M., Kokurin, M.Yu., Semenova, A.V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198416/ https://www.ncbi.nlm.nih.gov/pubmed/35726337 http://dx.doi.org/10.1016/j.amc.2022.127312 |
Ejemplares similares
-
Iterative methods for approximate solution of inverse problems
por: Bakushinsky, AB, et al.
Publicado: (2004) -
Iterative Methods for Ill-Posed Problems: An Introduction
por: Bakushinsky, Anatoly B, et al.
Publicado: (2010) -
A quasi-Newton algorithm for large-scale nonlinear equations
por: Huang, Linghua
Publicado: (2017) -
Hilbert's projective metric and iterated nonlinear maps
por: Nussbaum, R
Publicado: (1988) -
Iterated nonlinear maps and Hilbert's projective metric II
por: Nussbaum, Roger D
Publicado: (1989)