Cargando…
Identification and Validation of the Diagnostic Characteristic Genes of Ovarian Cancer by Bioinformatics and Machine Learning
Background: Ovarian cancer (OC) has a high mortality rate and poses a severe threat to women’s health. However, abnormal gene expression underlying the tumorigenesis of OC has not been fully understood. This study aims to identify diagnostic characteristic genes involved in OC by bioinformatics and...
Autores principales: | Liu, Jinya, Liu, Leping, Antwi, Paul Akwasi, Luo, Yanwei, Liang, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198487/ https://www.ncbi.nlm.nih.gov/pubmed/35719392 http://dx.doi.org/10.3389/fgene.2022.858466 |
Ejemplares similares
-
Identification of the diagnostic genes and immune cell infiltration characteristics of gastric cancer using bioinformatics analysis and machine learning
por: Xie, Rongjun, et al.
Publicado: (2023) -
Identification of Diagnostic Biomarkers in Systemic Lupus Erythematosus Based on Bioinformatics Analysis and Machine Learning
por: Jiang, Zhihang, et al.
Publicado: (2022) -
Identification of effective diagnostic biomarker and immune cell infiltration characteristics in acute liver failure by integrating bioinformatics analysis and machine-learning strategies
por: Yuan, Mengqin, et al.
Publicado: (2022) -
Bioinformatic analysis and machine learning to identify the diagnostic biomarkers and immune infiltration in adenomyosis
por: Liu, Dan, et al.
Publicado: (2023) -
Identification and validation of differentially expressed chromatin regulators for diagnosis of aortic dissection using integrated bioinformatics analysis and machine-learning algorithms
por: Liu, Chunjiang, et al.
Publicado: (2022)