Cargando…
Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars
To evaluate the effect of useful soil microorganisms and organic compounds on physiological characteristics and yield of two wheat cultivars under supplementary irrigation conditions, a study was conducted in the Agriculture Research Farm of Kurdistan University during the two cropping seasons of 20...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198557/ https://www.ncbi.nlm.nih.gov/pubmed/35720598 http://dx.doi.org/10.3389/fpls.2022.855090 |
_version_ | 1784727650527346688 |
---|---|
author | Najafi Vafa, Zahra Sohrabi, Yousef Mirzaghaderi, Ghader Heidari, Gholamreza |
author_facet | Najafi Vafa, Zahra Sohrabi, Yousef Mirzaghaderi, Ghader Heidari, Gholamreza |
author_sort | Najafi Vafa, Zahra |
collection | PubMed |
description | To evaluate the effect of useful soil microorganisms and organic compounds on physiological characteristics and yield of two wheat cultivars under supplementary irrigation conditions, a study was conducted in the Agriculture Research Farm of Kurdistan University during the two cropping seasons of 2017–2018 and 2018–2019. A split–split plot-based study on a randomized complete block design with four replicates was used as an experimental design. The main factor was irrigation at three levels, including control without irrigation, supplementary irrigation in the booting stage, and supplementary irrigation in the booting and flowering stages. Two wheat cultivars, namely, Sardari and Sirvan, as sub-factors and application of bio-fertilizers in eight levels, including the use of bio-fertilizers containing: Mycorrhiza, Seaweed extract, Nitrozist and Phosphozist, Mycorrhiza + Nitrozist and Phosphozist, Seaweed extract + Nitrozist and Phosphozist, Mycorrhiza + Seaweed extract, Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract, and non-application of bio-fertilizers, were considered as sub-factors. The results of both seasons of the experiment showed that the application of bio-fertilizers compared to the control treatment at all irrigation levels increased root volume, leaf relative water content (RWC), membrane stability index (MSI), and photosynthetic pigment content. The highest amount of H(2)O(2), proline, and soluble carbohydrates were obtained in wheat under dry land conditions, and supplementary irrigation, especially two-time irrigation, significantly reduced the values of these traits. Supplementary irrigation also increased grain yield, so that in the conditions of two-time irrigation compared to the non-irrigation treatment (dry land), in the first and second seasons, the grain yield increased by 79.51 and 78.69%, respectively. Application of bio-fertilizers (Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract) in comparison with the non-application of these fertilizers, due to increased root volume, RWC, MSI, and content of photosynthetic pigments, increased the grain yield in the first and second seasons of the experiment by 8.04 and 6.96%, respectively. As a result, suitable microorganisms and seaweed can improve wheat resistance mechanisms to water deficit, which along with using supplementary irrigation that saves water consumption improves plant growth and yield in areas faced with water shortage. |
format | Online Article Text |
id | pubmed-9198557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91985572022-06-16 Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars Najafi Vafa, Zahra Sohrabi, Yousef Mirzaghaderi, Ghader Heidari, Gholamreza Front Plant Sci Plant Science To evaluate the effect of useful soil microorganisms and organic compounds on physiological characteristics and yield of two wheat cultivars under supplementary irrigation conditions, a study was conducted in the Agriculture Research Farm of Kurdistan University during the two cropping seasons of 2017–2018 and 2018–2019. A split–split plot-based study on a randomized complete block design with four replicates was used as an experimental design. The main factor was irrigation at three levels, including control without irrigation, supplementary irrigation in the booting stage, and supplementary irrigation in the booting and flowering stages. Two wheat cultivars, namely, Sardari and Sirvan, as sub-factors and application of bio-fertilizers in eight levels, including the use of bio-fertilizers containing: Mycorrhiza, Seaweed extract, Nitrozist and Phosphozist, Mycorrhiza + Nitrozist and Phosphozist, Seaweed extract + Nitrozist and Phosphozist, Mycorrhiza + Seaweed extract, Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract, and non-application of bio-fertilizers, were considered as sub-factors. The results of both seasons of the experiment showed that the application of bio-fertilizers compared to the control treatment at all irrigation levels increased root volume, leaf relative water content (RWC), membrane stability index (MSI), and photosynthetic pigment content. The highest amount of H(2)O(2), proline, and soluble carbohydrates were obtained in wheat under dry land conditions, and supplementary irrigation, especially two-time irrigation, significantly reduced the values of these traits. Supplementary irrigation also increased grain yield, so that in the conditions of two-time irrigation compared to the non-irrigation treatment (dry land), in the first and second seasons, the grain yield increased by 79.51 and 78.69%, respectively. Application of bio-fertilizers (Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract) in comparison with the non-application of these fertilizers, due to increased root volume, RWC, MSI, and content of photosynthetic pigments, increased the grain yield in the first and second seasons of the experiment by 8.04 and 6.96%, respectively. As a result, suitable microorganisms and seaweed can improve wheat resistance mechanisms to water deficit, which along with using supplementary irrigation that saves water consumption improves plant growth and yield in areas faced with water shortage. Frontiers Media S.A. 2022-06-01 /pmc/articles/PMC9198557/ /pubmed/35720598 http://dx.doi.org/10.3389/fpls.2022.855090 Text en Copyright © 2022 Najafi Vafa, Sohrabi, Mirzaghaderi and Heidari. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Najafi Vafa, Zahra Sohrabi, Yousef Mirzaghaderi, Ghader Heidari, Gholamreza Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars |
title | Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars |
title_full | Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars |
title_fullStr | Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars |
title_full_unstemmed | Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars |
title_short | Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars |
title_sort | soil microorganisms and seaweed application with supplementary irrigation improved physiological traits and yield of two dryland wheat cultivars |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198557/ https://www.ncbi.nlm.nih.gov/pubmed/35720598 http://dx.doi.org/10.3389/fpls.2022.855090 |
work_keys_str_mv | AT najafivafazahra soilmicroorganismsandseaweedapplicationwithsupplementaryirrigationimprovedphysiologicaltraitsandyieldoftwodrylandwheatcultivars AT sohrabiyousef soilmicroorganismsandseaweedapplicationwithsupplementaryirrigationimprovedphysiologicaltraitsandyieldoftwodrylandwheatcultivars AT mirzaghaderighader soilmicroorganismsandseaweedapplicationwithsupplementaryirrigationimprovedphysiologicaltraitsandyieldoftwodrylandwheatcultivars AT heidarigholamreza soilmicroorganismsandseaweedapplicationwithsupplementaryirrigationimprovedphysiologicaltraitsandyieldoftwodrylandwheatcultivars |