Cargando…
Evaluation and Mitigation of Racial Bias in Clinical Machine Learning Models: Scoping Review
BACKGROUND: Racial bias is a key concern regarding the development, validation, and implementation of machine learning (ML) models in clinical settings. Despite the potential of bias to propagate health disparities, racial bias in clinical ML has yet to be thoroughly examined and best practices for...
Autores principales: | Huang, Jonathan, Galal, Galal, Etemadi, Mozziyar, Vaidyanathan, Mahesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198828/ https://www.ncbi.nlm.nih.gov/pubmed/35639450 http://dx.doi.org/10.2196/36388 |
Ejemplares similares
-
Racial Equity in Healthcare Machine Learning: Illustrating Bias in Models With Minimal Bias Mitigation
por: Barton, Michael, et al.
Publicado: (2023) -
The answer at our fingertips: Volume status in cirrhosis determined by machine learning and pulse oximeter waveform
por: Mazumder, Nikhilesh R., et al.
Publicado: (2022) -
Mitigating bias in machine learning for medicine
por: Vokinger, Kerstin N., et al.
Publicado: (2021) -
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
por: Yang, Jenny, et al.
Publicado: (2023) -
An adversarial training framework for mitigating algorithmic biases in clinical machine learning
por: Yang, Jenny, et al.
Publicado: (2023)