Cargando…

Glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer

BACKGROUND: Metabolic reprogramming is a feature of tumour cells and is essential to support their rapid proliferation. The glycolytic activity of liver cancer cells is significantly higher than that of normal liver cells, and the rapidly proliferating tumour cells are powered by aerobic glycolysis....

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Jia-Yue, Huang, Yu-Jie, He, Jun, Tang, Zu-Xiong, Qin, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198879/
https://www.ncbi.nlm.nih.gov/pubmed/35801051
http://dx.doi.org/10.12998/wjcc.v10.i15.4737
_version_ 1784727739713978368
author Zou, Jia-Yue
Huang, Yu-Jie
He, Jun
Tang, Zu-Xiong
Qin, Lei
author_facet Zou, Jia-Yue
Huang, Yu-Jie
He, Jun
Tang, Zu-Xiong
Qin, Lei
author_sort Zou, Jia-Yue
collection PubMed
description BACKGROUND: Metabolic reprogramming is a feature of tumour cells and is essential to support their rapid proliferation. The glycolytic activity of liver cancer cells is significantly higher than that of normal liver cells, and the rapidly proliferating tumour cells are powered by aerobic glycolysis. Lipid metabolism reprogramming enables tumour cells to meet their needs for highly proliferative growth and is an important driving force for the development of hepatocellular carcinoma (HCC). AIM: To explore the influence of different metabolic subtypes of HCC and analyse their significance in guiding prognosis and treatment based on the molecular mechanism of glycolysis and fatty acid oxidation (FAO). METHODS: By downloading related data from public databases including the Cancer Genome Atlas (TCGA), the Molecular Signatures Database, and International Cancer Genome Consortium, we utilised unsupervised consensus clustering to divide TCGA Liver Hepatocellular Carcinoma samples into four metabolic subgroups and compared single nucleotide polymorphism, copy number variation, tumour microenvironment, and Genomics of Drug Sensitivity in Cancer and Tumour Immune Dysfunction and Exclusion between different metabolites. The differences and causes of survival and the clinical characteristics between them were analysed, and a prognostic model was established based on glycolysis and FAO genes. Combined with the clinical features, a Norman diagram was created to compare the pros and cons of each model. RESULTS: In the four metabolic subgroups, with the increase in glycolytic expression, the median survival of patients showed the worst results, while FAO showed the best. When comparing the follow-up analysis of each group, we considered that the differences between them might be related to reactive oxygen species, somatic copy number variation of key genes, and immune microenvironment. It was also found that the FAO group and the low-risk group had better efficacy and response to immune checkpoint blockade treatment and anti-tumour drugs. CONCLUSION: There are obvious differences in genes, chromosomes, and clinical characteristics between metabolic subgroups. The establishment of a prognostic model could predict patient prognosis and guide clinical treatment.
format Online
Article
Text
id pubmed-9198879
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Baishideng Publishing Group Inc
record_format MEDLINE/PubMed
spelling pubmed-91988792022-07-06 Glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer Zou, Jia-Yue Huang, Yu-Jie He, Jun Tang, Zu-Xiong Qin, Lei World J Clin Cases Clinical and Translational Research BACKGROUND: Metabolic reprogramming is a feature of tumour cells and is essential to support their rapid proliferation. The glycolytic activity of liver cancer cells is significantly higher than that of normal liver cells, and the rapidly proliferating tumour cells are powered by aerobic glycolysis. Lipid metabolism reprogramming enables tumour cells to meet their needs for highly proliferative growth and is an important driving force for the development of hepatocellular carcinoma (HCC). AIM: To explore the influence of different metabolic subtypes of HCC and analyse their significance in guiding prognosis and treatment based on the molecular mechanism of glycolysis and fatty acid oxidation (FAO). METHODS: By downloading related data from public databases including the Cancer Genome Atlas (TCGA), the Molecular Signatures Database, and International Cancer Genome Consortium, we utilised unsupervised consensus clustering to divide TCGA Liver Hepatocellular Carcinoma samples into four metabolic subgroups and compared single nucleotide polymorphism, copy number variation, tumour microenvironment, and Genomics of Drug Sensitivity in Cancer and Tumour Immune Dysfunction and Exclusion between different metabolites. The differences and causes of survival and the clinical characteristics between them were analysed, and a prognostic model was established based on glycolysis and FAO genes. Combined with the clinical features, a Norman diagram was created to compare the pros and cons of each model. RESULTS: In the four metabolic subgroups, with the increase in glycolytic expression, the median survival of patients showed the worst results, while FAO showed the best. When comparing the follow-up analysis of each group, we considered that the differences between them might be related to reactive oxygen species, somatic copy number variation of key genes, and immune microenvironment. It was also found that the FAO group and the low-risk group had better efficacy and response to immune checkpoint blockade treatment and anti-tumour drugs. CONCLUSION: There are obvious differences in genes, chromosomes, and clinical characteristics between metabolic subgroups. The establishment of a prognostic model could predict patient prognosis and guide clinical treatment. Baishideng Publishing Group Inc 2022-05-26 2022-05-26 /pmc/articles/PMC9198879/ /pubmed/35801051 http://dx.doi.org/10.12998/wjcc.v10.i15.4737 Text en ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved. https://creativecommons.org/licenses/by-nc/4.0/This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
spellingShingle Clinical and Translational Research
Zou, Jia-Yue
Huang, Yu-Jie
He, Jun
Tang, Zu-Xiong
Qin, Lei
Glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer
title Glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer
title_full Glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer
title_fullStr Glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer
title_full_unstemmed Glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer
title_short Glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer
title_sort glycolytic and fatty acid oxidation genes affect the treatment and prognosis of liver cancer
topic Clinical and Translational Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198879/
https://www.ncbi.nlm.nih.gov/pubmed/35801051
http://dx.doi.org/10.12998/wjcc.v10.i15.4737
work_keys_str_mv AT zoujiayue glycolyticandfattyacidoxidationgenesaffectthetreatmentandprognosisoflivercancer
AT huangyujie glycolyticandfattyacidoxidationgenesaffectthetreatmentandprognosisoflivercancer
AT hejun glycolyticandfattyacidoxidationgenesaffectthetreatmentandprognosisoflivercancer
AT tangzuxiong glycolyticandfattyacidoxidationgenesaffectthetreatmentandprognosisoflivercancer
AT qinlei glycolyticandfattyacidoxidationgenesaffectthetreatmentandprognosisoflivercancer