Cargando…
Reconstructing Chromatic-Dispersion Relations and Predicting Refractive Indices Using Text Mining and Machine Learning
[Image: see text] Predicting the properties of materials prior to their synthesis is of great significance in materials science. Optical materials exhibit a large number of interesting properties that make them useful in a wide range of applications, including optical glasses, optical fibers, and la...
Autores principales: | Zhao, Jiuyang, Cole, Jacqueline M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198980/ https://www.ncbi.nlm.nih.gov/pubmed/35587269 http://dx.doi.org/10.1021/acs.jcim.2c00253 |
Ejemplares similares
-
Characterization of Chromatic Dispersion and Refractive Index of Polymer Optical Fibers
por: Ayesta, Igor, et al.
Publicado: (2017) -
A database of refractive indices and dielectric constants auto-generated using ChemDataExtractor
por: Zhao, Jiuyang, et al.
Publicado: (2022) -
Hybrid Refractive-Diffractive Lens with Reduced Chromatic and Geometric Aberrations and Learned Image Reconstruction
por: Evdokimova, Viktoria V., et al.
Publicado: (2022) -
Machine Learning Techniques Used for Text Mining
por: Godoy Viera, Ángel Freddy
Publicado: (2017) -
Dispersion and chromaticity measurement at LEAR
por: Mulder, Henk
Publicado: (1992)