Cargando…
Transient receptor potential channel 6 in human skeletal muscle fibers: Investigation in fresh and conserved tissue samples
Transient receptor potential channel 6 (TRPC6) channels constitute non-selective cation channels that are localized in the plasmalemma or sarcolemma, and have a leading permeability for the bivalent calcium ion. Animal models indicate an involvement of TRPC6 in malignant hyperthermia. The expression...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198990/ https://www.ncbi.nlm.nih.gov/pubmed/35719837 http://dx.doi.org/10.3892/br.2022.1543 |
Sumario: | Transient receptor potential channel 6 (TRPC6) channels constitute non-selective cation channels that are localized in the plasmalemma or sarcolemma, and have a leading permeability for the bivalent calcium ion. Animal models indicate an involvement of TRPC6 in malignant hyperthermia. The expression of TRPC6 in the sarcolemma has been demonstrated in the skeletal muscle fibers of mice. The importance of TRPC6 channels for the influx of calcium into the muscle cell has also been established. The presence of TRPC6 in tissues of human skeletal muscle is surmised. In order to confirm the presence of TRPC6 in human skeletal muscle, tissue samples of various skeletal muscles (Musculus deltoideus, pectoralis major, trizeps brachii and rectus femoris) from eight different human donors (n=8; six preserved cadavers and two non-preserved cadavers) were examined using immunohistochemistry. TRPC6 was found in all muscle fibers of all investigated bodies. Appropriate controls yielded the expected results. As demonstrated in animal studies and in studies of human cells, the presented results confirmed the presence of TRPC6 in human skeletal muscle tissue. Thus, TRPC6 is most likely important for calcium homeostasis and the proper function of human muscle fibers and may be a target for treatment in various muscular diseases. |
---|