Cargando…
Stability selection enables robust learning of differential equations from limited noisy data
We present a statistical learning framework for robust identification of differential equations from noisy spatio-temporal data. We address two issues that have so far limited the application of such methods, namely their robustness against noise and the need for manual parameter tuning, by proposin...
Autores principales: | Maddu, Suryanarayana, Cheeseman, Bevan L., Sbalzarini, Ivo F., Müller, Christian L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199075/ https://www.ncbi.nlm.nih.gov/pubmed/35756878 http://dx.doi.org/10.1098/rspa.2021.0916 |
Ejemplares similares
-
STENCIL-NET for equation-free forecasting from data
por: Maddu, Suryanarayana, et al.
Publicado: (2023) -
A C++ expression system for partial differential equations enables generic simulations of biological hydrodynamics
por: Singh, Abhinav, et al.
Publicado: (2021) -
Design centering enables robustness screening of pattern formation models
por: Solomatina, Anastasia, et al.
Publicado: (2022) -
Adaptive particle representation of fluorescence microscopy images
por: Cheeseman, Bevan L., et al.
Publicado: (2018) -
Neural ordinary differential equations with irregular and noisy data
por: Goyal, Pawan, et al.
Publicado: (2023)