Cargando…

A MACHINE LEARNING-BASED APPROACH TO EPILEPTIC SEIZURE PREDICTION USING ELECTRO-ENCEPHALOGRAPHIC SIGNALS

The brain is made up of billions of neurons, which control all actions performed by us. In epilepsy, the pattern order of brain signals is altered, causing epileptiform discharges in an individual’s brain. Approximately 1% of the world population has epilepsy and, therefore, there is a need for stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Rebello, Bruna Carolina, Ramirez, Alejandro Rafael Garcia, Heredia-Negron, Frances, Roche-Lima, Abiel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199360/
https://www.ncbi.nlm.nih.gov/pubmed/35711293
http://dx.doi.org/10.22533/at.ed.317282219056
Descripción
Sumario:The brain is made up of billions of neurons, which control all actions performed by us. In epilepsy, the pattern order of brain signals is altered, causing epileptiform discharges in an individual’s brain. Approximately 1% of the world population has epilepsy and, therefore, there is a need for studies that can help in the diagnosis and treatment of this disorder. The objective of this work is to develop a machine learning-based approach to predict epileptic seizures using non-invasive electroencephalography (EEG). Therefore, the classification of interictal and preictal states was performed using the CHB-MIT database. The algorithm was developed to predict epileptic seizures in multiple subjects using a patient-independent approach. The Discrete Wavelet Transform was used to perform the decomposition of the EEG signals in 5 levels and, as characteristics, the Spectral Power, the Mean and the Standard Deviation were studied, in order to analyze which one would present the best result and as a classifier, the Supported Vector Machine (SVM). The study achieved an accuracy of 92.30%, 84.60% and 76.92% for the Power, Standard Deviation and Mean characteristics, respectively.