Cargando…
Clinical Variables, Deep Learning and Radiomics Features Help Predict the Prognosis of Adult Anti-N-methyl-D-aspartate Receptor Encephalitis Early: A Two-Center Study in Southwest China
OBJECTIVE: To develop a fusion model combining clinical variables, deep learning (DL), and radiomics features to predict the functional outcomes early in patients with adult anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in Southwest China. METHODS: From January 2012, a two-center study of...
Autores principales: | Xiang, Yayun, Dong, Xiaoxuan, Zeng, Chun, Liu, Junhang, Liu, Hanjing, Hu, Xiaofei, Feng, Jinzhou, Du, Silin, Wang, Jingjie, Han, Yongliang, Luo, Qi, Chen, Shanxiong, Li, Yongmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199424/ https://www.ncbi.nlm.nih.gov/pubmed/35720336 http://dx.doi.org/10.3389/fimmu.2022.913703 |
Ejemplares similares
-
Diffusion kurtosis imaging and diffusion tensor imaging parameters applied to white matter and gray matter of patients with anti-N-methyl-D-aspartate receptor encephalitis
por: Liu, Hanjing, et al.
Publicado: (2022) -
Merging Multiphase CTA Images and Training Them Simultaneously with a Deep Learning Algorithm Could Improve the Efficacy of AI Models for Lateral Circulation Assessment in Ischemic Stroke
por: Wang, Jingjie, et al.
Publicado: (2022) -
Case Report: Overlapping Multiple Sclerosis With Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Case Report and Review of Literature
por: Huang, Ying, et al.
Publicado: (2020) -
Anti-N-Methyl-D-aspartate Receptor Encephalitis: A Severe, Potentially Reversible Autoimmune Encephalitis
por: Liu, Cai-yun, et al.
Publicado: (2017) -
Anti-N-methyl-D-aspartate Receptor Encephalitis
por: Tanquary, Gregory, et al.
Publicado: (2019)