Cargando…

A Facile Microwave Hydrothermal Method for Fabricating SnO(2)@C/Graphene Composite With Enhanced Lithium Ion Storage Properties

SnO(2)@C/graphene ternary composite material has been prepared via a double-layer modified strategy of carbon layer and graphene sheets. The size, dispersity, and coating layer of SnO(2)@C are uniform. The SnO(2)@C/graphene has a typical porous structure. The discharge and charge capacities of the i...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Li-Lai, Li, Ming-Yang, Sun, Yi-Han, Yang, Xue-Ying, Ma, Min-Xuan, Wang, Hui, An, Mao-Zhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199493/
https://www.ncbi.nlm.nih.gov/pubmed/35720986
http://dx.doi.org/10.3389/fchem.2022.895749
_version_ 1784727850727768064
author Liu, Li-Lai
Li, Ming-Yang
Sun, Yi-Han
Yang, Xue-Ying
Ma, Min-Xuan
Wang, Hui
An, Mao-Zhong
author_facet Liu, Li-Lai
Li, Ming-Yang
Sun, Yi-Han
Yang, Xue-Ying
Ma, Min-Xuan
Wang, Hui
An, Mao-Zhong
author_sort Liu, Li-Lai
collection PubMed
description SnO(2)@C/graphene ternary composite material has been prepared via a double-layer modified strategy of carbon layer and graphene sheets. The size, dispersity, and coating layer of SnO(2)@C are uniform. The SnO(2)@C/graphene has a typical porous structure. The discharge and charge capacities of the initial cycle for SnO(2)@C/graphene are 2,210 mAh g(−1) and 1,285 mAh g(−1), respectively, at a current density of 1,000 mA g(−1). The Coulombic efficiency is 58.60%. The reversible specific capacity of the SnO(2)@C/graphene anode is 955 mAh g(−1) after 300 cycles. The average reversible specific capacity still maintains 572 mAh g(−1) even at the high current density of 5 A g(−1). In addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to further investigate the prepared SnO(2)@C/graphene composite material by a microwave hydrothermal method. As a result, SnO(2)@C/graphene has demonstrated a better electrochemical performance.
format Online
Article
Text
id pubmed-9199493
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-91994932022-06-16 A Facile Microwave Hydrothermal Method for Fabricating SnO(2)@C/Graphene Composite With Enhanced Lithium Ion Storage Properties Liu, Li-Lai Li, Ming-Yang Sun, Yi-Han Yang, Xue-Ying Ma, Min-Xuan Wang, Hui An, Mao-Zhong Front Chem Chemistry SnO(2)@C/graphene ternary composite material has been prepared via a double-layer modified strategy of carbon layer and graphene sheets. The size, dispersity, and coating layer of SnO(2)@C are uniform. The SnO(2)@C/graphene has a typical porous structure. The discharge and charge capacities of the initial cycle for SnO(2)@C/graphene are 2,210 mAh g(−1) and 1,285 mAh g(−1), respectively, at a current density of 1,000 mA g(−1). The Coulombic efficiency is 58.60%. The reversible specific capacity of the SnO(2)@C/graphene anode is 955 mAh g(−1) after 300 cycles. The average reversible specific capacity still maintains 572 mAh g(−1) even at the high current density of 5 A g(−1). In addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to further investigate the prepared SnO(2)@C/graphene composite material by a microwave hydrothermal method. As a result, SnO(2)@C/graphene has demonstrated a better electrochemical performance. Frontiers Media S.A. 2022-06-01 /pmc/articles/PMC9199493/ /pubmed/35720986 http://dx.doi.org/10.3389/fchem.2022.895749 Text en Copyright © 2022 Liu, Li, Sun, Yang, Ma, Wang and An. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Chemistry
Liu, Li-Lai
Li, Ming-Yang
Sun, Yi-Han
Yang, Xue-Ying
Ma, Min-Xuan
Wang, Hui
An, Mao-Zhong
A Facile Microwave Hydrothermal Method for Fabricating SnO(2)@C/Graphene Composite With Enhanced Lithium Ion Storage Properties
title A Facile Microwave Hydrothermal Method for Fabricating SnO(2)@C/Graphene Composite With Enhanced Lithium Ion Storage Properties
title_full A Facile Microwave Hydrothermal Method for Fabricating SnO(2)@C/Graphene Composite With Enhanced Lithium Ion Storage Properties
title_fullStr A Facile Microwave Hydrothermal Method for Fabricating SnO(2)@C/Graphene Composite With Enhanced Lithium Ion Storage Properties
title_full_unstemmed A Facile Microwave Hydrothermal Method for Fabricating SnO(2)@C/Graphene Composite With Enhanced Lithium Ion Storage Properties
title_short A Facile Microwave Hydrothermal Method for Fabricating SnO(2)@C/Graphene Composite With Enhanced Lithium Ion Storage Properties
title_sort facile microwave hydrothermal method for fabricating sno(2)@c/graphene composite with enhanced lithium ion storage properties
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199493/
https://www.ncbi.nlm.nih.gov/pubmed/35720986
http://dx.doi.org/10.3389/fchem.2022.895749
work_keys_str_mv AT liulilai afacilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT limingyang afacilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT sunyihan afacilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT yangxueying afacilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT maminxuan afacilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT wanghui afacilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT anmaozhong afacilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT liulilai facilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT limingyang facilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT sunyihan facilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT yangxueying facilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT maminxuan facilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT wanghui facilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties
AT anmaozhong facilemicrowavehydrothermalmethodforfabricatingsno2cgraphenecompositewithenhancedlithiumionstorageproperties