Cargando…

Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels

Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemic...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Lu, Xu, Guangyin, Jiang, Ruotian, Luo, Yuncheng, Zuo, Yunxia, Liu, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199554/
https://www.ncbi.nlm.nih.gov/pubmed/33827408
http://dx.doi.org/10.2174/1570159X19666210407152528
Descripción
Sumario:Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors, such as mechanical stretch, temperature, and pH. In the peripheral nervous system, K2P channels are widely expressed in nociceptive neurons and play a critical role in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss the advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.