Cargando…
Exploring Parameter and Hyper-Parameter Spaces of Neuroscience Models on High Performance Computers With Learning to Learn
Neuroscience models commonly have a high number of degrees of freedom and only specific regions within the parameter space are able to produce dynamics of interest. This makes the development of tools and strategies to efficiently find these regions of high importance to advance brain research. Expl...
Autores principales: | Yegenoglu, Alper, Subramoney, Anand, Hater, Thorsten, Jimenez-Romero, Cristian, Klijn, Wouter, Pérez Martín, Aarón, van der Vlag, Michiel, Herty, Michael, Morrison, Abigail, Diaz-Pier, Sandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199579/ https://www.ncbi.nlm.nih.gov/pubmed/35720775 http://dx.doi.org/10.3389/fncom.2022.885207 |
Ejemplares similares
-
Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection
por: Dahiya, Neeraj, et al.
Publicado: (2023) -
Machine learning-based mortality rate prediction using optimized hyper-parameter
por: Khan, Y.A., et al.
Publicado: (2020) -
Hyper-Learning
por: Hess, Edward
Publicado: (2020) -
Genetic Parameter and Hyper-Parameter Estimation Underlie Nitrogen Use Efficiency in Bread Wheat
por: Sadeqi, Mohammad Bahman, et al.
Publicado: (2023) -
Machine learning for neuroscience
por: Hinton, Geoffrey E
Publicado: (2011)