Cargando…
Machine learning approach to identify adverse events in scientific biomedical literature
Monitoring the occurrence of adverse events in the scientific literature is a mandatory process in drug marketing surveillance. This is a very time‐consuming and complex task to fulfill the compliance and, most importantly, to ensure patient safety. Therefore, a machine learning (ML) algorithm has b...
Autores principales: | Wewering, Sonja, Pietsch, Claudia, Sumner, Marc, Markó, Kornél, Lülf‐Averhoff, Anna‐Theresa, Baehrens, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199879/ https://www.ncbi.nlm.nih.gov/pubmed/35266644 http://dx.doi.org/10.1111/cts.13268 |
Ejemplares similares
-
Tracking Modified Vaccinia Virus Ankara in the Chicken Embryo: In Vivo Tropism and Pathogenesis of Egg Infections
por: Langenmayer, Martin C., et al.
Publicado: (2018) -
Distribution and absence of generalized lesions in mice following single dose intramuscular inoculation of the vaccine candidate MVA-MERS-S
por: Langenmayer, Martin C., et al.
Publicado: (2018) -
Recognizing Scientific Artifacts in Biomedical Literature
por: Groza, Tudor, et al.
Publicado: (2013) -
Generalized enrichment analysis improves the detection of adverse drug events from the biomedical literature
por: Winnenburg, Rainer, et al.
Publicado: (2016) -
TrigNER: automatically optimized biomedical event trigger recognition on scientific documents
por: Campos, David, et al.
Publicado: (2014)