Cargando…
Forecasting molecular dynamics energetics of polymers in solution from supervised machine learning
Machine learning techniques including neural networks are popular tools for chemical, physical and materials applications searching for viable alternative methods in the analysis of structure and energetics of systems ranging from crystals to biomolecules. Efforts are less abundant for prediction of...
Autores principales: | Andrews, James, Gkountouna, Olga, Blaisten-Barojas, Estela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200117/ https://www.ncbi.nlm.nih.gov/pubmed/35774160 http://dx.doi.org/10.1039/d2sc01216b |
Ejemplares similares
-
Simulating the NaK Eutectic Alloy with Monte Carlo and Machine Learning
por: Reitz, Douglas M., et al.
Publicado: (2019) -
Supervised machine learning in wind forecasting and ramp event prediction
por: Dhiman, Harsh S, et al.
Publicado: (2020) -
Supervised machine learning approach to molecular dynamics forecast of SARS-CoV-2 spike glycoproteins at varying temperatures
por: Liang, David, et al.
Publicado: (2021) -
Modeling the Tertiary Structure of the Rift Valley Fever Virus L Protein
por: Gogovi, Gideon K., et al.
Publicado: (2019) -
Machine learning based implicit solvent model for aqueous-solution alanine dipeptide molecular dynamics simulations
por: Yao, Songyuan, et al.
Publicado: (2023)